如圖,正三棱柱ABCA1B1C1中,DBC的中點(diǎn),AA1=AB

   (I)求證:ADB1D

   (II)求證:A1C//平面AB1D;

   (III)求二面角BAB1D的大小.

解法一(Ⅰ)證明:∵ABC―A1B1C1是正三棱柱,

∴BB1⊥平面ABC,

∴BD是B1D在平面ABC上的射影

在正△ABC中,∵D是BC的中點(diǎn),

∴AD⊥BD,

根據(jù)三垂線定理得,AD⊥B1D

(Ⅱ)解:連接A1B,設(shè)A1B∩AB1 = E,連接DE.

∵AA1=AB  ∴四邊形A1ABB1是正方形,

∴E是A1B的中點(diǎn),

又D是BC的中點(diǎn),

∴DE∥A1C.

∵DE平面AB1D,A1C平面AB1D,

∴A1C∥平面AB1D.

   (Ⅲ)解:在面ABC內(nèi)作DF⊥AB于點(diǎn)F,在面A1ABB1內(nèi)作FG⊥AB1于點(diǎn)G,連接DG.  ∵平面A1ABB1⊥平面ABC,  ∴DF⊥平面A1ABB1,

∴FG是DG在平面A1ABB1上的射影,  ∵FG⊥AB1, ∴DG⊥AB1

∴∠FGD是二面角B―AB1―D的平面角

設(shè)A1A = AB = 1,在正△ABC中,DF=

在△ABE中,F(xiàn)G=?BE=

在Rt△DFG中,,

所以,二面角B―AB1―D的大小為

解法二:

建立空間直角坐標(biāo)系D―xyz,如圖,  

證明:,

   ∴

即 AD⊥B1

(Ⅱ)解:連接A1B,設(shè)A1B∩AB1 = E,連接DE.

 

(Ⅲ)設(shè)是平面AB1D的法向量,則,

;

同理,可求得平面AB1B的法向量是

設(shè)二面角BAB1D的大小θ,,

∴二面角BAB1D的大小為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,正三棱柱ABC-A1B1C1各棱長都等于a,E是BB1的中點(diǎn).
(1)求直線C1B與平面A1ABB1所成角的正弦值;
(2)求證:平面AEC1⊥平面ACC1A1;
(3)求點(diǎn)C1到平面AEC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,正三棱柱ABC-A1B1C1的各棱長都2,E,F(xiàn)分別是AB,A1C1的中點(diǎn),則EF的長是( 。
A、2
B、
3
C、
5
D、
7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,正三棱柱ABC-A1B1C1的所有棱長都為2,D為CC1中點(diǎn).
(Ⅰ)求證:AB1⊥平面A1BD;
(Ⅱ)求二面角A-A1D-B的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•鄭州二模)如圖,正三棱柱ABC-A1B1C1的所有棱長都為2,D為CC1中點(diǎn).
(Ⅰ)求證:AB1⊥面A1BD;
(Ⅱ)設(shè)點(diǎn)O為AB1上的動點(diǎn),當(dāng)OD∥平面ABC時,求
AOOB1
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,正三棱柱ABC-A1B1C1中(注:底面為正三角形且側(cè)棱與底面垂直),BC=CC1=2,P,Q分別為BB1,CC1的中點(diǎn).
(Ⅰ)求多面體ABC-A1PC1的體積;
(Ⅱ)求A1Q與BC1所成角的大。

查看答案和解析>>

同步練習(xí)冊答案