A. | $(-1,-\frac{1}{2})$ | B. | (-1,0) | C. | (-2,+∞) | D. | $(-2,-\frac{1}{2})$ |
分析 令f(x)=x2+(a+1)x+a+b+1,由于關(guān)于x的方程x2+(a+1)x+a+b+1=0的兩個(gè)實(shí)根分別為x1,x2,且0<x1<1,x2>1,可得f(0)>0,f(1)<0,再利用線性規(guī)劃的有關(guān)知識即可得出.
解答 解:令f(x)=x2+(a+1)x+a+b+1,
∵關(guān)于x的方程x2+(a+1)x+a+b+1=0的兩個(gè)實(shí)根分別為一個(gè)橢圓,一個(gè)雙曲線的離心率,
∴x的方程x2+(a+1)x+a+b+1=0的兩個(gè)實(shí)根分別為x1,x2,且0<x1<1,x2>1,
∴f(0)>0,f(1)<0,
∴a+b+1>0,1+a+1+a+b+1<0,
即a+2b+1>0,2a+b+3<0,
設(shè)$\frac{a}$=k,即b=ka,
聯(lián)立$\left\{\begin{array}{l}{a+b+1=0}\\{2a+b+3=0}\end{array}\right.$,解得P(-2,1).
∴-2<k<-$\frac{1}{2}$,
故選:D.
點(diǎn)評 本題考查了二次函數(shù)的性質(zhì)、線性規(guī)劃的有關(guān)知識、一元二次方程有實(shí)數(shù)根的條件,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | r1=r2 | B. | r1<r2 | C. | r1>r2 | D. | 無法判定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -b<a<b<-a | B. | -b<a<-a<b | C. | a<-b<b<-a | D. | a<-b<-a<b |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com