4.函數(shù)y=sin(ωx+φ)(x∈R,ω>0,0≤φ<2π)的部分圖象如圖所示,則( 。
A.ω=$\frac{π}{4}$,φ=$\frac{3π}{4}$B.ω=$\frac{π}{4}$,φ=$\frac{π}{4}$C.ω=$\frac{π}{2}$,φ=$\frac{π}{4}$D.ω=$\frac{π}{3}$,φ=$\frac{π}{6}$

分析 由函數(shù)圖象經(jīng)過點(diǎn)(1,1),代入解析式得sin(φ+ω)=1,解出φ+ω=$\frac{π}{2}$+kπ.又函數(shù)圖象經(jīng)過點(diǎn)(3,0),代入解析式得sin(φ+3ω)=0,解出:φ+3ω=kπ,根據(jù)ω>0,0≤φ<2π.k∈Z,求解即可.

解答 解:∵函數(shù)圖象經(jīng)過點(diǎn)(1,1),代入解析式得sin(φ+ω)=1,
解得:φ+ω=$\frac{π}{2}$+2kπ…①,
又∵函數(shù)圖象經(jīng)過點(diǎn)(3,0),代入解析式得sin(φ+3ω)=0,
解得:φ+3ω=kπ…②,
由①②解得:$ω=-\frac{1}{2}kπ-\frac{π}{4}$(k∈Z)
∵ω>0,0≤φ<2π.
當(dāng)k=-1時,ω=$\frac{π}{4}$,
將k=-1,ω=$\frac{π}{4}$,帶入②解得:φ=$\frac{π}{4}$.
故選B.

點(diǎn)評 本題考查了正弦型函數(shù)的圖象知識,給出正弦型三角函數(shù)的部分圖象確定其解析式的問題,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在△ABC中,cos2A-3cos(B+C)-1=0.
(1)求角A的大。
(2)若△ABC的外接圓半徑為1,試求該三角形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知f(x)=sin$\frac{πx+π}{3}$-$\sqrt{3}$cos$\frac{πx+π}{3}$,f(1)+f(2)+…+f(2014)=$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.下列命題中,是假命題的是(  )
A.?x0∈R,sinx0+cosx0=$\sqrt{3}$B.?x0∈R,tanx0=2016
C.?x>0,x>lnxD.?x∈R,2x>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)集合M={x|x+1>0},N={x|2x-1<0},則M∩N=( 。
A.(-3,$\frac{1}{2}$)B.(-3,-$\frac{1}{2}$)C.(-1,$\frac{1}{2}$)D.($\frac{1}{2}$,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知數(shù)列{an}的前n項(xiàng)和是Sn,且滿足2Sn=3an-$\frac{1}{2}$(n∈N*).
(1)求a1,a2,a3,a4,并猜想通項(xiàng)公式an(不用證明);
(2)設(shè)bn=1+2log3(2an),求證:$\frac{1}{_{1}_{2}}$+$\frac{1}{_{2}_{3}}$+…+$\frac{1}{_{n}_{n+1}}$<$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若函數(shù)f(x)=ax3-x2+x-5在(-∞,+∞)上單調(diào)遞增,則a的取值范圍是( 。
A.a>$\frac{1}{3}$B.a<$\frac{1}{3}$C.a≤$\frac{1}{3}$D.a≥$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知一次函數(shù)f(x)滿足f(f(x))=4x+9,則f(x)的函數(shù)關(guān)系式f(x)=2x+3和f(x)=-2x-9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.函數(shù)f(x)為(-∞,+∞)上的奇函數(shù),則f(0)=0.

查看答案和解析>>

同步練習(xí)冊答案