12.已知x∈R,用A(x)表示不小于x的最小整數(shù),如A($\sqrt{3}$)=2,A(-1.2)=-1,若A(2x+1)=3,則x的取值范圍是( 。
A.[1,$\frac{3}{2}$)B.(1,$\frac{3}{2}$]C.[$\frac{1}{2}$,1)D.($\frac{1}{2}$,1]

分析 由A(2x+1)=3可得2<2x+1≤3,從而解得x的取值范圍.

解答 解:∵A(2x+1)=3,
∴2<2x+1≤3,
解得,x∈($\frac{1}{2}$,1],
故選:D.

點(diǎn)評(píng) 本題考查了學(xué)生對(duì)新定義的接受與轉(zhuǎn)化能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.曲線y=sinx與x軸在區(qū)間[-π,2π]上所圍成陰影部分的面積為( 。
A.6B.4C.2D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.某次考試的第二大題由8道判斷題構(gòu)成,要求考生用畫(huà)“√”和畫(huà)“×”表示對(duì)各題的正誤判斷,每題判斷正確得1分,判斷錯(cuò)誤不得分.請(qǐng)根據(jù)如下甲,乙,丙3名考生的判斷及得分結(jié)果,計(jì)算出考生丁的得分.
第1 題第2題第3 題第4 題第5 題第6 題第7題第8 題得分
×××××5
×××××5
××××6
××××××?
丁得了6分.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.若定義在R上的函數(shù)f(x)滿足f(0)=-1,其導(dǎo)函數(shù)f′(x)滿足f′(x)<m<-1,則下列結(jié)論中一定錯(cuò)誤的是( 。
A.f($\frac{1}{m}$)>-$\frac{1}{m}$B.f($\frac{1}{m}$)>-$\frac{1}{m+1}$C.f($\frac{1}{m+1}$)<$\frac{m}{m+1}$D.f($\frac{1}{m+1}$)<-$\frac{m+2}{m+1}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.設(shè)f(2x)=12x2+4x-3,求f(3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.在回歸分析中,下列說(shuō)法錯(cuò)誤的是( 。
A.用線性回歸模型近似真實(shí)模型可產(chǎn)生誤差
B.R2越大,模型的擬合效果越好
C.殘差平方和越小,模型的擬合效果越好
D.R2越大,殘差平方和也越大

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.某廠為了解甲、乙兩條生產(chǎn)線生產(chǎn)的產(chǎn)品的質(zhì)量,從兩條生產(chǎn)線生產(chǎn)的產(chǎn)品中隨機(jī)抽取各10件,測(cè)量產(chǎn)品中某種元素的含量(單位:毫克).如圖是測(cè)量數(shù)據(jù)的莖葉圖:
規(guī)定:當(dāng)產(chǎn)品中的此種元素含量滿足≥18毫克時(shí),該產(chǎn)品為優(yōu)等品.
(1)根據(jù)樣本數(shù)據(jù),計(jì)算甲、乙兩條生產(chǎn)線產(chǎn)品質(zhì)量的均值與方差,并說(shuō)明哪條生產(chǎn)線的產(chǎn)品的質(zhì)量相對(duì)穩(wěn)定;
(2)從乙廠抽出的上述10件產(chǎn)品中,隨機(jī)抽取3件,求抽到的3件產(chǎn)品中優(yōu)等品數(shù)ξ的分布列及其數(shù)學(xué)期望E(ξ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知命題p:定義在R上不恒為常數(shù)的函數(shù)y=f(x),滿足f(x)=$\frac{1}{f(x+3)}$,則函數(shù)f(x)的周期為6; 命題q:函數(shù)f(x)=2x+1是增函數(shù).下列說(shuō)法正確的是( 。
A.p∨q為假B.p∧q為真C.(¬p)∧q為真D.p∧(¬q)為真

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知$\overrightarrow{a}$與$\overrightarrow$均為單位向量,它們的夾角為60°.
(Ⅰ)求|$\overrightarrow{a}$-3$\overrightarrow$|
(Ⅱ)若x$\overrightarrow{a}$-$\overrightarrow$與$\overrightarrow{a}$+x$\overrightarrow$垂直,求x的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案