分析 (Ⅰ)求出函數(shù)的導(dǎo)數(shù),確定導(dǎo)數(shù)為0 的方程的根的個(gè)數(shù)即可;
(Ⅱ)令g(x)=f(x)-kx=exsinx-kx,即g(x)≥0恒成立,通過(guò)討論k的范圍確定函數(shù)的單調(diào)性,從而求出k的范圍即可.
解答 解:(Ⅰ)函數(shù)F(x)=f-1(x)-f(x)=lnx-ex,∴F′(x)=$\frac{1}{x}$-ex,
令g(x)=1-xex,則g′(x)=-(1+x)ex,
∴函數(shù)在(0,+∞)上單調(diào)遞減,
∵x=0時(shí),g(0)=1>0,x=1時(shí),g(1)=1-e<0,
∴在(0,1)上存在唯一x0,使得g(x0)=0,∴F′(x0)=0,
F(x)在(0,x0)上遞增,在(x0,+∞)上遞減,
∴函數(shù)F(x)的極值點(diǎn)個(gè)數(shù)為1個(gè);(4分)
(Ⅱ) 令g(x)=f(x)-kx=exsinx-kx,即g(x)≥0恒成立,
而g′(x)=ex(sinx+cosx)-k,
令h(x)=ex(sinx+cosx)⇒h′(x)=ex(sinx+cosx)+ex(cosx-sinx)=2excosx,
∵x∈[0,$\frac{π}{2}$],h′(x)≥0⇒h(x)在∈[0,$\frac{π}{2}$]上單調(diào)遞增,1≤h(x)≤${e}^{\frac{π}{2}}$,(6分)
當(dāng)k≤1時(shí),g′(x)≥0,g(x)在∈[0,$\frac{π}{2}$]上單調(diào)遞增,g(x)≥g(0)=0,符合題意;
當(dāng)k≥${e}^{\frac{π}{2}}$時(shí),g′(x)≤0⇒g(x)在∈[0,$\frac{π}{2}$]上單調(diào)遞減,g(x)≤g(0)=0,與題意不合; (8分)
當(dāng)1<k<${e}^{\frac{π}{2}}$時(shí),g′(x)為一個(gè)單調(diào)遞增的函數(shù),而g′(0)=1-k<0,g′( $\frac{π}{2}$)=${e}^{\frac{π}{2}}$-k>0,
由零點(diǎn)存在性定理,必存在一個(gè)零點(diǎn)x0,使得g′(x0)=0,
當(dāng)x∈[0,x0)時(shí),g′(x)≤0,從而g(x)在x∈[0,x0)上單調(diào)遞減,
從而g(x)≤g(0)=0,與題意不合,
綜上所述:k的取值范圍為(-∞,1](12分)
點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、最值問(wèn)題,考查導(dǎo)數(shù)的應(yīng)用以及函數(shù)的零點(diǎn)問(wèn)題,是一道中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{\sqrt{3}}{2}$ | B. | $\sqrt{3}$ | C. | 2$\sqrt{3}$ | D. | 4$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com