11.已知函數(shù)f(x)=(x-a)lnx,(a≥0).
(1)當(dāng)a=0時,若直線y=2x+m與函數(shù)y=f(x)的圖象相切,求m的值;
(2)若f(x)在[1,2]上是單調(diào)減函數(shù),求a的最小值.

分析 (1)求導(dǎo)函數(shù),利用直線y=2x+m與函數(shù)y=f(x)的圖象相切,求切點坐標(biāo),即可求m的值;
(2)利用f(x)在[1,2]上是單調(diào)減函數(shù),可得f′(x)=lnx+1-$\frac{a}{x}$,≤0在[1,2]上恒成立,分離參數(shù),求最值,即可求得a的最小值;

解答 解:(1)當(dāng)a=0時,f(x)=xlnx,
∴f′(x)=lnx+1,
∵直線y=2x+m與函數(shù)y=f(x)的圖象相切,
∴斜率k=f′(x)=lnx+1=2,解得:x=2
∵f(e)=e,
∴切點為(e,e),
∴m=-e;
(2)∵f(x)=(x-a)lnx,求導(dǎo),f′(x)=lnx+1-$\frac{a}{x}$,
∵f(x)在[1,2]上是單調(diào)減函數(shù),
∴f′(x)=lnx+1-$\frac{a}{x}$≤0在[1,2]上恒成立
∴a≥xlnx+x在[1,2]上恒成立
令g(x)=xlnx+x,則g′(x)=lnx+2>0
∴g(x)=xlnx+x在[1,2]上單調(diào)遞增
∴a≥g(2)=2ln2+2
∴a的最小值為2ln2+2;

點評 本題考查導(dǎo)數(shù)知識的運用,考查導(dǎo)數(shù)的幾何意義,考查恒成立問題,考查分離參數(shù)求最值的應(yīng)用,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖所示,是一個獎杯的三視圖(單位:cm),計算這個獎杯的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.過點A(-2,0),圓心在(3,-2)的圓的一般方程為x2+y2-6x+4y-16=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.集合P={x∈Z|y=$\sqrt{1-{x}^{2}}$},Q={y∈R|y=2cosx,x∈R},則P∩Q=( 。
A.[-1,1]B.{0,1}C.{-1,1}D.{-1,0,1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知集合A={a,b,c,d},集合B={b,c,d,e},則A∩B={b,c,d}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知f(x)=x+$\frac{2}{x}$,則曲線f(x)在點(1,f(1))處的切線方程為( 。
A.2x-y+1=0B.x-y-4=0C.x+y-2=0D.x+y-4=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.曲線$y=\sqrt{x}$在x=1處的切線與坐標(biāo)軸圍成的三角形面積為(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.如圖所示,在上、下底面對應(yīng)邊的比為1:2的三棱臺中,過上底面一邊A1B1作一個平行于棱C1C的平面A1B1EF,則這個平面分三棱臺成兩部分的體積之比為( 。
A.2:1B.3:1C.3:2D.3:4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知函數(shù)$f(x)=\left\{\begin{array}{l}(a-1)x+4a,x≤1\\-{x^2}-(a+1)x,x>1\end{array}\right.$為R上的減函數(shù),則實數(shù)a的取值范圍為[-$\frac{1}{6}$,1).

查看答案和解析>>

同步練習(xí)冊答案