已知拋物線y2=4x上一點M到焦點的距離為3,則點M到y(tǒng)軸的距離為
 
考點:拋物線的簡單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:先設出該點的坐標,根據(jù)拋物線的定義可知該點到準線的距離與其到焦點的距離相等,進而利用點到直線的距離求得x的值,
代入拋物線方程求得y值,即可得到所求點的坐標.
解答: 解:∵拋物線方程為y2=4x

∴焦點為F(1,0),準線為l:x=-1
設所求點坐標為M(x,y)
作MQ⊥l于Q
根據(jù)拋物線定義可知M到準線的距離等于M、Q的距離
即x+1=3,解之得x=2,
代入拋物線方程求得y=±4
故點M坐標為:(2,y)
即點M到y(tǒng)軸的距離為2
故答案為:2.
點評:本題主要考查了拋物線的簡單性質(zhì).在涉及焦點弦和關(guān)于焦點的問題時常用拋物線的定義來解決.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

小明在本期五次數(shù)學測驗中成績?nèi)缦拢?5,84,86,88,87,那么他的數(shù)學成績的方差是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設等比數(shù)列{an}的公比為q,前n項和為Sn,若S8,S7,S9成等差數(shù)列,則公比q為(  )
A、q=1
B、q=-2或q=1
C、q=-2
D、q=2或q=-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的右焦點F,直線x=
a2
c
與其漸近線交于A,B兩點,且△ABF為鈍角三角形,則雙曲線離心率的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

三角形ABC中AB=2,AC=3,D為BC的中點,則
AD
BC
=( 。
A、
5
2
B、-
5
2
C、5
D、-5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知鈍角△ABC中,a=4,b=4,∠A=30°,則∠B等于
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

從1,2,3,4,5中任取兩個不同的數(shù)字,構(gòu)成一個兩位數(shù),則這個數(shù)字大于40的概率是(  )
A、
2
5
B、
4
5
C、
1
5
D、
3
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知{an}是等比數(shù)列,a1=2且a1,a3+1,a4成等差數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)若bn=log2an,求數(shù)列{
1
bnbn+1
}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=loga(2x+1)-loga(1-2x).
(1)判斷函數(shù)f(x)的奇偶性,并給予證明;
(2)若函數(shù)y=f(x)與y=m-loga(2-4x)的圖象有且僅有一個公共點,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案