若實數(shù)x,y滿足(x-2)2+y2=3,設k=
y
x
,則實數(shù)k的取值范圍是
 
考點:直線與圓的位置關(guān)系,直線的斜率
專題:直線與圓
分析:k=
y
x
,則y=kx,根據(jù)實數(shù)x,y滿足(x-2)2+y2=3,可得直線y=kx與圓與交點,利用圓心到直線的距離小于等于半徑,建立不等式,即可求實數(shù)k的取值范圍.
解答: 解:設k=
y
x
,則y=kx,
∵實數(shù)x,y滿足(x-2)2+y2=3,
∴直線y=kx與圓與交點,
|2k|
1+k2
3

∴k2≤3,
-
3
≤k≤
3
,
∴實數(shù)k的取值范圍是[-
3
,
3
]

故答案為:[-
3
3
]
點評:本題考查直線與圓的位置關(guān)系,考查點到直線的距離公式的運用,直線與圓的位置關(guān)系的研究,通常利用圓心到直線的距離與半徑比較.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=sin2x+sin2x+3cos2x,求
(1)函數(shù)的最小值及此時的x的集合.
(2)函數(shù)的單調(diào)減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某工廠擬建一座底面為矩形、面積為200平方米且深為1米的無蓋長方體的三級污水池(如圖所示)如果池外圈四壁建造單價為每平方米400元,中間兩條隔墻建造單價為每平方米248元,池底建造單價為每平方米80元.
(1)試設計污水池底面的長和寬,使總造價最低,并求出最低造價;
(2)由于受地形限制,地面的長、寬都不超過16米,試設計污水池底面的長和寬,使總造價最低,并求出最低造價.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

C.(不等式選做題)若關(guān)于x 的方程x2+x+|a-
1
4
|=0(a∈R)有實根,則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

關(guān)于x不等式|x-3|+|x+1|≤t2-3t的解集非空,則實數(shù)t的取值范圍為(  )
A、(-∞,-1]∪[4,+∞)
B、(-∞,-2]∪[5,+∞)
C、[-1,4]
D、(-∞,-1]∪[2,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某商品在近100天內(nèi),商品的單價f(t)(元)與時間t(天)的函數(shù)關(guān)系式如下:f(t)=
t
4
+22,     0≤t≤40,t∈Z
-
t
2
+52,       40<t≤100,t∈Z
銷售量g(t)與時間t(天)的函數(shù)關(guān)系式是g(t)=-
t
3
+
112
3
(0≤t≤100,t∈Z).求這種商品在這100天內(nèi)哪一天的銷售額最高?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知在△ABC中,
AB
AC
<0,S△ABC=
15
4
,|
AB
|=3,|
AC
|=5,則∠BAC=( 。
A、30°B、60°
C、150°D、30°或150°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

a
=(x,6),
b
=(3,4),且
a
b
,那么x的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系xoy上,設向量
OA
=(2cosα,sinα)
,
OB
=(2cosβ,sinβ)
,
OM
=
3
5
OA
+
4
5
OB
,點M在橢圓x2+4y2=4上,O是坐標系原點.
(1)求cos(α-β)的值;
(2)設
OC
=(-
6
2
,0),
OD
=(
6
2
,0),
ON
=
OA
+
OB
2
,求證|
NC
|+|
ND
|=2
2

查看答案和解析>>

同步練習冊答案