9.已知f(x)和g(x)分別為R上的奇函數(shù)和偶函數(shù),且f(x)+g(x)=lg(2x+1),則f(1)的值為( 。
A.lg2B.lg3C.$lg\sqrt{2}$D.$lg\sqrt{3}$

分析 根據(jù)題意,計(jì)算出f(1)+g(1)、-f(1)+g(1)的值即可,聯(lián)立兩個(gè)等式即可求得f(1)的大。

解答 解:由題可知:f(1)+g(1)=lg(21+1)=lg3,
f(-1)+g(-1)=lg(2-1+1)=1g3-lg2,
由∵f(x),g(x)分別為定義在R上的奇函數(shù)和偶函數(shù),
∴-f(1)+g(1)=lg3-lg2,所以f(1)=lg$\sqrt{2}$,
故選:C.

點(diǎn)評(píng) 本題考查函數(shù)的奇偶性,考查學(xué)生的計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.直線l:kx-y+1=0被圓x2+y2-4y=0截得的最短弦長(zhǎng)為( 。
A.$2\sqrt{3}$B.3C.$2\sqrt{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知f(x)=$\left\{\begin{array}{l}{lnx,(0<x≤1)}\\{f(x-1)+1,(1<x≤3)}\end{array}\right.$,則f(2+$\frac{1}{e}$)=(  )
A.0B.1C.ln(1+$\frac{1}{e}$)+1D.ln(2+$\frac{1}{e}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.等比數(shù)列{an}各項(xiàng)為正,a3,a5,-a4成等差數(shù)列,Sn為{an}的前n項(xiàng)和,則$\frac{{S}_{6}}{{S}_{3}}$=$\frac{9}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.設(shè)y=f(t)是某港口水的深度關(guān)于時(shí)間t(時(shí))的函數(shù),其中0≤t≤24,下表是該港口某一天從0至24時(shí)記錄的時(shí)間t與水深y的關(guān)系.
t03691215182124
y1215.112.19.111.914.911.98.912.1
經(jīng)長(zhǎng)期觀察,函數(shù)y=f(t)的圖象可以近似地看成函數(shù)y=k+Asin(ωt+φ)的圖象.
根據(jù)上述數(shù)據(jù),函數(shù)y=f(t)的解析式為$y=3sin\frac{π}{6}t+12$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知tan α=2,則$\frac{4cosα-sinα}{sinα+2cosα}$的值為( 。
A.$\frac{1}{2}$B.-2C.-$\frac{1}{2}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知不等式2xy≤ax2+y2,若對(duì)任意x∈[2,4]且y∈[1,6],該不等式恒成立,則實(shí)數(shù)a的取值范圍是[1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.設(shè)傾斜角為60°的直線l過點(diǎn)(1,0)且與圓C:x2+y2-4x=0相交,則圓C的半徑為2;圓心到直線l的距離是$\frac{{\sqrt{3}}}{2}$;直線l被圓截得的弦長(zhǎng)為$\sqrt{13}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知幾何體O-ABCD的底面ABCD是邊長(zhǎng)為$\sqrt{3}$的正的方形,且該幾何體體積的最大值為$\frac{{3\sqrt{2}}}{2}$,則該幾何體外接球的表面積為8π.

查看答案和解析>>

同步練習(xí)冊(cè)答案