18.已知f(x)=2cos(2x+φ),滿足f(x+φ)=f(x+4φ),則f(x)在[${\frac{π}{2}$,π]上的單調(diào)遞增區(qū)間為(  )
A.[${\frac{π}{2}$,$\frac{2π}{3}}$]B.[${\frac{π}{2}$,$\frac{5π}{6}}$]C.[${\frac{2π}{3}$,$\frac{5π}{6}}$]D.[${\frac{5π}{6}$,π]

分析 根據(jù)余弦函數(shù)的周期性求出φ的值,再利用余弦函數(shù)的單調(diào)性即可求出f(x)在[${\frac{π}{2}$,π]上的單調(diào)遞增區(qū)間.

解答 解:由f(x+φ)=f(x+4φ),
得周期T=3φ=π,解得φ=$\frac{π}{3}$,
所以$f(x)=2cos({2x+\frac{π}{3}})$;
又當(dāng)x∈[${\frac{π}{2}$,π]時,2x∈[π,2π],
所以2x+$\frac{π}{3}$∈[$\frac{4π}{3}$,$\frac{7π}{3}$];
又余弦函數(shù)在[π,2π]上的單調(diào)遞增,
所以$2x+\frac{π}{3}∈[{\frac{4π}{3},2π}]$,
解得$x∈[{\frac{π}{2},\frac{5π}{6}}]$,
所以f(x)在[${\frac{π}{2}$,π]上的單調(diào)遞增區(qū)間為[$\frac{π}{2}$,$\frac{5π}{6}$].
故選:B.

點(diǎn)評 本題考查了余弦函數(shù)的圖象與性質(zhì)的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖所示,平面ABEF⊥平面ABCD,且四邊形ABEF為菱形,ABCD為直角梯形,∠BAD=∠CDA=90°,∠ABE=60°,AB=2AD=2CD=2,H是EF的中點(diǎn)
(1)求證:平面AHC⊥平面BCE
(2)求四棱錐C-ABEH的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.復(fù)數(shù)z=$\frac{2+i}{1-2i}$,則|z|=(  )
A.1B.$\sqrt{3}$C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知Sn、Tn分別為數(shù)列{an}、{bn}的前n項(xiàng)和,a1=0,a2=2,2Sn+1=$\sqrt{{S_n}+{S_{n+1}}}$•$\sqrt{{S_{n+1}}+{S_{n+2}}}$,若Tn=$\frac{{{S_n}+{S_{n+1}}}}{2}$,則bn=2n-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=x2+bx-alnx.
(1)當(dāng)函數(shù)f(x)在點(diǎn)(1,f(1))處的切線方程為y+5x-5=0,求函數(shù)f(x)的解析式;
(2)當(dāng)a=1時,函數(shù)f(x)=x2+bx-alnx在(1,2)上單調(diào)遞減,試求b的取值范圍;
(3)在(1)的條件下,若x0是函數(shù)f(x)的零點(diǎn),且x0∈(n,n+1),n∈N*,求n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.執(zhí)行如圖所示的程序框圖,則輸出的結(jié)果是(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知全集A={1,3,5,7},B={x|x<3},則A∩B=( 。
A.{1}B.{3}C.{1,3}D.{5,7}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.設(shè)f(x)=x3+mlog2(x+$\sqrt{{x^2}+1}$)(m∈R,m>0),則不等式f(m)+f(m2-2)≥0的解是m≥1.(注:填寫m的取值范圍)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知直線l:2x+y-3=0與雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的兩支分別相交于P,Q兩點(diǎn),O為坐標(biāo)原點(diǎn),若$\overrightarrow{OP}$•$\overrightarrow{OQ}$=0,則$\frac{1}{|OP{|}^{2}}$+$\frac{1}{|OQ{|}^{2}}$=$\frac{5}{9}$.

查看答案和解析>>

同步練習(xí)冊答案