7.設(shè)f(x)=x3+mlog2(x+$\sqrt{{x^2}+1}$)(m∈R,m>0),則不等式f(m)+f(m2-2)≥0的解是m≥1.(注:填寫m的取值范圍)

分析 根據(jù)題意,分析f(x)可得其是奇函數(shù),且是增函數(shù),進(jìn)而將不等式f(m)+f(m2-2)≥0轉(zhuǎn)化為f(m)≥f(2-m2),由單調(diào)性,可得其等價(jià)于m≥2-m2,解可得答案.

解答 解:因?yàn)閒(-x)=-x3+log2(-x+$\sqrt{{x^2}+1}$)=-x3-log2(x+$\sqrt{{x^2}+1}$),
所以函數(shù)f(x)=x3+mlog2(x+$\sqrt{{x^2}+1}$)(m∈R,m>0)是定義域?yàn)镽的奇函數(shù),且在R上單調(diào)遞增,
所以f(m)+f(m2-2)≥0?f(m2-2)≥-f(m)?f(m2-2)≥f(-m)?m2-2≥-m?m≥1或m≤-2
因?yàn)閙∈R,m>0,所以m≥1.
故答案為:m≥1.

點(diǎn)評(píng) 本題考查函數(shù)的單調(diào)性與奇偶性的綜合運(yùn)用,其中將不等式的恒成立與奇偶性、單調(diào)性結(jié)合,解題時(shí),注意先分析函數(shù)的奇偶性與單調(diào)性,再轉(zhuǎn)化不等式,進(jìn)而求解.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.正四棱柱的體積為8,則該正四棱柱外接球體積的最小值為( 。
A.4$\sqrt{3}$πB.$\frac{32π}{3}$C.12πD.12$\sqrt{3}$π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知f(x)=2cos(2x+φ),滿足f(x+φ)=f(x+4φ),則f(x)在[${\frac{π}{2}$,π]上的單調(diào)遞增區(qū)間為( 。
A.[${\frac{π}{2}$,$\frac{2π}{3}}$]B.[${\frac{π}{2}$,$\frac{5π}{6}}$]C.[${\frac{2π}{3}$,$\frac{5π}{6}}$]D.[${\frac{5π}{6}$,π]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)函數(shù)f(x)=(1+x)2-2ln(1+x).
(1)若關(guān)于x的不等式f(x)-m≥0在[0,e-1](e為自然對(duì)數(shù)的底數(shù)) 上有實(shí)數(shù)解,求實(shí)數(shù)m的取值范圍;
(2)設(shè)g(x)=f(x)-x2-1,若關(guān)于x的方程g(x)=p至少有一個(gè)解,求p的 最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=$\frac{x^2}{2}$+mlnx,g(x)=$\frac{x^2}{2}$-x,p(x)=mx2
(1)若函數(shù)f(x)與g(x)在公共定義域上具有相同的單調(diào)性,求實(shí)數(shù)m的值;
(2)若函數(shù)m(x),m1(x),m2(x)在公共定義域內(nèi)滿足m1(x)>m(x)>m2(x)恒成立,則稱m(x)為從m1(x)至m2(x)的“過渡函數(shù)”;
①在(1)的條件下,探究從f(x)至g(x)是否存在無窮多個(gè)“過渡函數(shù)”,并說明理由;
②是否存在非零實(shí)數(shù)m,使得f(x)是從p(x)至g(x)的“過渡函數(shù)”.若存在,求出非零實(shí)數(shù)m的取值范圍;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知函數(shù)f(x)=$\left\{\begin{array}{l}{log_2}x,x≥1\\ f({2x}),0<x<1\end{array}$,則f[($\frac{1}{2}}$)${\;}^{\frac{1}{2}}$]=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知a是任意實(shí)數(shù),則關(guān)于x的不等式(a2-a+2016)x2<(a2-a+2016)2x+3的解為-1<x<3.(用x的不等式表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.執(zhí)行如圖所示的程序框圖,若輸出的結(jié)果是$\frac{15}{16}$,則整數(shù)N=(  )
A.16B.15C.14D.13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.如果一個(gè)正方體的體積在數(shù)值上等于V,表面積在數(shù)值上等于S,且V-S-m≥0恒成立,則實(shí)數(shù)m的范圍是( 。
A.(-∞,-16]B.(-∞,-32]C.[-32,-16]D.以上答案都不對(duì)

查看答案和解析>>

同步練習(xí)冊(cè)答案