14.已知數(shù)列{an}滿足a1=10,an+1-an=2n(n∈N*),則$\frac{a_n}{n}$的最小值為$\frac{16}{3}$.

分析 利用“累加求和”方法可得an,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性即可得出.

解答 解:∵a1=10,an+1-an=2n(n∈N*),
∴an=(an-an-1)+$({a}_{n-1}-{a}_{{n}_{-2}})$+…+(a2-a1)+a1
=2(n-1)+2(n-2)+…+2+10
=2×$\frac{(n-1)n}{2}$+10
=n(n-1)+10.
∴$\frac{a_n}{n}$=n-1+$\frac{10}{n}$,
考察函數(shù)f(x)=x+$\frac{10}{x}$-1的單調(diào)性,
f′(x)=1-$\frac{10}{{x}^{2}}$=$\frac{(x+\sqrt{10})(x-\sqrt{10})}{{x}^{2}}$,
∴函數(shù)f(x)在$(0,\sqrt{10})$上單調(diào)遞減,在$(\sqrt{10},+∞)$上單調(diào)遞增.
又f(3)=2+$\frac{10}{3}$=$\frac{16}{3}$,f(4)=3+$\frac{5}{2}$=$\frac{11}{2}$,
可知:當(dāng)n=3時(shí),f(n)取得最小值$\frac{16}{3}$.
故答案為:$\frac{16}{3}$.

點(diǎn)評(píng) 本題考查了等差數(shù)列的通項(xiàng)公式及其求和公式、利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性極值與最值,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.如圖,AB是⊙O的直徑,C為⊙O上一點(diǎn),AD和過(guò)C點(diǎn)的切線互相垂直,垂足為D.
(Ⅰ)求證:AC平分∠DAB;
(Ⅱ)若AB=9,AC=6,求CD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知數(shù)列{an}是由正數(shù)組成的等比數(shù)列,Sn為其前n項(xiàng)和.已知a2a4=16,S3=7,則S5=( 。
A.15B.17C.31D.33

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.函數(shù)y=($\frac{1}{2-a}$)x+1+3(a<2),圖象必經(jīng)過(guò)點(diǎn)(-1,4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.執(zhí)行如圖的程序框圖,則輸出的q的值為( 。
A.10B.34C.36D.154

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.若不等式ax2+bx-1>0的解集是{x|1<x<2}.
(1)試求a、b的值;
(2)求不等式$\frac{ax+1}{bx-1}$≥0的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=$\frac{1}{3}$x3-$\frac{a}{2}$x2+(3-a)x+b在(0,+∞)上有3個(gè)單調(diào)區(qū)間,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.(1)若正數(shù)x,y滿足x+3y=5xy,求3x+4y的最小值;
(2)已知a為正實(shí)數(shù)且a2+$\frac{b^2}{2}$=1,求a$\sqrt{1+{b^2}}$的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.如圖,已知ABC的三頂點(diǎn)A(-1,-1),B(3,1),C(1,6),EF是△ABC的中位線,求EF所在直線的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案