9.設(shè)z∈C且z≠0,“z是純虛數(shù)”是“z2∈R”的( 。
A.充分非必要條件B.必要非充分條件
C.充要條件D.既不充分也不必要條件

分析 z∈C且z≠0,“z是純虛數(shù)”⇒“z2∈R”,反之不成立,例如取z=2.即可判斷出結(jié)論.

解答 解:∵z∈C且z≠0,“z是純虛數(shù)”⇒“z2∈R”,反之不成立,例如取z=2.
∴“z是純虛數(shù)”是“z2∈R”的充分不必要條件.
故選:A.

點(diǎn)評(píng) 本題考查了純虛數(shù)的定義、復(fù)數(shù)的運(yùn)算法則、簡(jiǎn)易邏輯的判定方法,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知函數(shù)f(x)=(ax2+x-1)ex+f'(0).
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若g(x)=e-xf(x)+lnx,h(x)=ex,過(guò)O(0,0)分別作曲線y=g(x)與y=h(x)的切線l1,l2,且l1與l2關(guān)于x軸對(duì)稱,求證:-$\frac{(e+1)^{3}}{2{e}^{2}}$<a<-$\frac{e+2}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.長(zhǎng)方體ABCD-A1B1C1D1中,AB=3,AD=4,AA1=5,點(diǎn)P是面A1B1C1D1內(nèi)一動(dòng)點(diǎn),則|PA|+|PC|的最小值為5$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知全集U=R,函數(shù)$f(x)=\sqrt{x-3}+lg({10-x})$的定義域?yàn)榧螦,集合B={x|5≤x<7}
(1)求集合A;         
(2)求(∁UB)∩A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.集合A={1,3,a2},集合B={a+1,a+2},若B∪A=A,則實(shí)數(shù)a=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.有三張卡片,分別寫(xiě)有1和2,1和3,2和3,甲乙丙三人各取走一張卡片,甲看了乙的卡片后說(shuō):“我與乙的卡片上相同的數(shù)字不是2”,乙看了丙的卡片后說(shuō):“我與丙的卡片上相同的數(shù)字不是1”,丙說(shuō):“我的卡片上的數(shù)字之和不是5”,則甲的卡片上沒(méi)有的數(shù)字是( 。
A.不確定B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.給出如下命題:
①若“p∧q”為假命題,則p,q均為假命題;
②在△ABC中,“A>B”是“sinA>sinB”的充要條件;
③(1+x)8的展開(kāi)式中二項(xiàng)式系數(shù)最大的項(xiàng)是第五項(xiàng).
其中正確的是(  )
A.①②B.②③C.①③D.①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.函數(shù)y=3x的值域?yàn)椋ā 。?table class="qanwser">A.(0,+∞)B.[1,+∞)C.(0,1]D.(0,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015-2016學(xué)年江西省南昌市高二文下學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:填空題

已知命題函數(shù)在定義域上單調(diào)遞增;命題不等式對(duì)任意實(shí)數(shù)恒成立.若是真命題,則實(shí)數(shù)的取值范圍為_(kāi)____________.

查看答案和解析>>

同步練習(xí)冊(cè)答案