在函數(shù)①y=cos丨2x丨,②y=丨cosx丨,③y=cos(2x+
π
6
)④y=tan(2x-
π
4
)中,最小正周期為π的所有函數(shù)為( 。
A、①②③B、①③④
C、②④D、①③
考點(diǎn):三角函數(shù)的周期性及其求法
專題:三角函數(shù)的圖像與性質(zhì)
分析:根據(jù)三角函數(shù)的周期性,求出各個(gè)函數(shù)的最小正周期,從而得出結(jié)論.
解答: 解:∵函數(shù)①y=cos丨2x丨=cos2x,它的最小正周期為
2
=π,
②y=丨cosx丨的最小正周期為
1
2
1
=π,
③y=cos(2x+
π
6
)的最小正周期為
2
=π,
④y=tan(2x-
π
4
)的最小正周期為
π
2
,
故選:A.
點(diǎn)評(píng):本題主要考查三角函數(shù)的周期性及求法,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

給出以下五個(gè)命題:
①對(duì)于任意的a>0,b>0,都有algb=blga成立;
②直線y=x•tanα+b的傾斜角等于α;
③與兩條異面直線都平行且距離相等的平面有且只有一個(gè);
④在平面內(nèi),如果將單位向量的起點(diǎn)移到同一個(gè)點(diǎn),那么終點(diǎn)的軌跡是一個(gè)半徑為1的圓;
⑤已知函數(shù)y=f(x),若存在常數(shù)M>0,使|f(x)|<M•|x|對(duì)定義域內(nèi)的任意x均成立,則稱f(x)為“倍約束函數(shù)”.對(duì)于二次函數(shù)f(x)=x2+1,該函數(shù)是倍約束函數(shù).
其中真命題的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+mx-1,若對(duì)于任意x∈[m,m+1],都有f(x)<0成立,則實(shí)數(shù)m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將函數(shù)f(x)=sin(ωx+φ)(ω>0,-
π
2
≤φ<
π
2
)圖象上每一點(diǎn)的橫坐標(biāo)縮短為原來的一半,縱坐標(biāo)不變,再向右平移
π
6
個(gè)單位長度得到y(tǒng)=sinx的圖象,則f(
π
6
)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了得到函數(shù)y=sin3x+cos3x的圖象,可以將函數(shù)y=
2
cos3x的圖象(  )
A、向右平移
π
12
個(gè)單位
B、向右平移
π
4
個(gè)單位
C、向左平移
π
12
個(gè)單位
D、向左平移
π
4
個(gè)單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

.
z
是z的共軛復(fù)數(shù),若z+
.
z
=2,(z-
.
z
)i=2(i為虛數(shù)單位),則z=( 。
A、1+iB、-1-i
C、-1+iD、1-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在(1+x)6(1+y)4的展開式中,記xmyn項(xiàng)的系數(shù)為f(m,n),則f(3,0)+f(2,1)+f(1,2)+f(0,3)=( 。
A、45B、60
C、120D、210

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)為偶函數(shù)的是( 。
A、f(x)=x-1
B、f(x)=x2+x
C、f(x)=2x-2-x
D、f(x)=2x+2-x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的右焦點(diǎn)為(
5
,0),離心率為
5
3

(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若動(dòng)點(diǎn)P(x0,y0)為橢圓C外一點(diǎn),且點(diǎn)P到橢圓C的兩條切線相互垂直,求點(diǎn)P的軌跡方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案