【題目】 如圖,要設(shè)計(jì)一張矩形廣告,該廣告含有大小相等的左右兩個(gè)矩形欄目(即圖中陰影部分),這兩欄的面積之和為18000cm2,四周空白的寬度為10cm,兩欄之間的中縫空白的寬度為5cm,怎樣確定廣告的高與寬的尺寸(單位:cm),能使矩形廣告面積最?
【答案】當(dāng)廣告的高為140 cm,寬為175 cm時(shí),可使廣告的面積最小.
【解析】
設(shè)廣告的高為寬分別為x cm,y cm,則每欄的高和寬分別為x-20,其中x>20,y>25
兩欄面積之和為2(x-20),由此得y=
廣告的面積S=xy=x()=x,
整理得S=
因?yàn)?/span>x-20>0, 所以S≥2
當(dāng)且僅當(dāng)時(shí)等號(hào)成立,
此時(shí)有(x-20)2=14400(x>20),解得x=140,代入y=+25,得y=175,
即當(dāng)x=140,y=175時(shí),S取得最小值24500,
故當(dāng)廣告的高為140 cm,寬為175 cm時(shí),可使廣告的面積最小.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形是正方形, 平面, // , , , 為的中點(diǎn).
(1)求證: ;
(2)求證: //平面;
(3)求二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)a,b,c分別是的三條邊,且.我們知道,如果為直角三角形,那么(勾股定理).反過來,如果,那么為直角三角形(勾股定理的逆定理).由此可知,為直角三角形的充要條件是.請(qǐng)利用邊長(zhǎng)a,b,c分別給出為銳角三角形和鈍角三角形的一個(gè)充要條件,并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,為了保護(hù)環(huán)境,實(shí)現(xiàn)城市綠化,某房地產(chǎn)公司要在拆遷地長(zhǎng)方形ABCD處規(guī)劃一塊長(zhǎng)方形地面HPGC,建造住宅小區(qū)公園,但不能越過文物保護(hù)區(qū)三角形AEF的邊線EF.已知AB=CD=200 m,BC=AD=160 m,AF=40 m,AE=60 m,問如何設(shè)計(jì)才能使公園占地面積最大,求出最大面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)為.過作直線交橢圓于,過作直線交橢圓于,且垂直于點(diǎn).
(Ⅰ)證明:點(diǎn)在橢圓內(nèi)部;
(Ⅱ)求四邊形面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題正確的個(gè)數(shù)是( )
①命題已知或,,則是的充分不必要條件;
②“函數(shù)的最小正周期為”是“”的必要不充分條件;
③在上恒成立在上恒成立;
④“平面向量與的夾角是鈍角”的充要條件是“”
⑤命題函數(shù)的值域?yàn)?/span>,命題函數(shù)是減函數(shù).若或為真命題,且為假命題,則實(shí)數(shù)的取值范圍是.
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2sin2(x+)-2cos(x-)-5a+2.
(1)設(shè)t=sinx+cosx,將函數(shù)f(x)表示為關(guān)于t的函數(shù)g(t),求g(t)的解析式;
(2)對(duì)任意x∈[0,],不等式f(x)≥6-2a恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某城市為了解游客人數(shù)的變化規(guī)律,提高旅游服務(wù)質(zhì)量,收集并整理了2014年1月至2016年12月期間月接待游客量(單位:萬人)的數(shù)據(jù),繪制了如圖所示的折線圖.根據(jù)該折線圖,下列結(jié)論錯(cuò)誤的是( )
A.月接待游客量逐月增加
B.年接待游客量逐年增加
C.各年的月接待游客量高峰期大致在7,8月
D.各年1月至6月的月接待游客量相對(duì)于7月至12月,波動(dòng)性更小,變化比較平穩(wěn)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com