【題目】(本小題滿分13分)
品酒師需定期接受酒味鑒別功能測試,一種通常采用的測試方法如下:拿出瓶外觀相同但品質(zhì)不同的酒讓其品嘗,要求其按品質(zhì)優(yōu)劣為它們排序;經(jīng)過一段時間,等其記憶淡忘之后,再讓其品嘗這瓶酒,并重新按品質(zhì)優(yōu)劣為它們排序,這稱為一輪測試。根據(jù)一輪測試中的兩次排序的偏離程度的高低為其評為。
現(xiàn)設(shè),分別以表示第一次排序時被排為1,2,3,4的四種酒在第二次排序時的序號,并令
,
則是對兩次排序的偏離程度的一種描述。
(Ⅰ)寫出的可能值集合;
(Ⅱ)假設(shè)等可能地為1,2,3,4的各種排列,求的分布列;
(Ⅲ)某品酒師在相繼進行的三輪測試中,都有,
(i)試按(Ⅱ)中的結(jié)果,計算出現(xiàn)這種現(xiàn)象的概率(假定各輪測試相互獨立);
(ii)你認(rèn)為該品酒師的酒味鑒別功能如何?說明理由。
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a為正的常數(shù),函數(shù)f(x)=|ax﹣x2|+lnx.
(1)若a=2,求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)設(shè)g(x)= ,求g(x)在區(qū)間[1,e]上的最小值.(e≈2.71828為自然對數(shù)的底數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知曲線: ,以平面直角坐標(biāo)系的原點為極點, 軸的正半軸為極軸,取相同的單位長度建立極坐標(biāo)系,已知直線: .
(1)將曲線上的所有點的橫坐標(biāo)、縱坐標(biāo)分別伸長為原來的、2倍后得到曲線,求的參數(shù)方程;
(2)在曲線上求一點,使點到直線的距離最大,并求出此最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,直線的參數(shù)方程是(為參數(shù)),以為極點,軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,且直線與曲線交于,兩點.
(Ⅰ)求曲線的直角坐標(biāo)方程及直線恒過的定點的坐標(biāo);
(Ⅱ)在(Ⅰ)的條件下,若,求直線的普通方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在區(qū)間(﹣1,1)上的函數(shù)f(x)= 是奇函數(shù),且f( )= ,
(1)確定f(x)的解析式;
(2)判斷f(x)的單調(diào)性并用定義證明;
(3)解不等式f(t﹣1)+f(t)<0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】朱世杰是歷史上最未打的數(shù)學(xué)家之一,他所著的《四元玉鑒》卷中“如像招數(shù)一五間”,有如下問題:“今有官司差夫一千八百六十四人筑堤,只云初日差六十四人,次日轉(zhuǎn)多七人,每人日支米三升,共支米四百三石九斗二升,問筑堤幾日?”.其大意為:“官府陸續(xù)派遣1864人前往修筑堤壩,第一天派出64人,從第二天開始,每天派出的人數(shù)比前一天多7人,修筑堤壩的每人每天發(fā)大米3升,共發(fā)出大米40392升,問修筑堤壩多少天”.在這個問題中,前5天應(yīng)發(fā)大米( )
A. 894升 B. 1170升 C. 1275升 D. 1457升
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)若直線與曲線的交點的橫坐標(biāo)為,且,求整數(shù)所有可能的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在[1,+∞)上的函數(shù)f(x)= 給出下列結(jié)論:
①函數(shù)f(x)的值域為(0,8];
②對任意的n∈N,都有f(2n)=23﹣n;
③存在k∈( , ),使得直線y=kx與函數(shù)y=f(x)的圖象有5個公共點;
④“函數(shù)f(x)在區(qū)間(a,b)上單調(diào)遞減”的充要條件是“存在n∈N,使得(a,b)(2n , 2n+1)”
其中正確命題的序號是( )
A.①②③
B.①③④
C.①②④
D.②③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)集合M={x|0≤x≤2},N={y|0≤y≤2},給出如下四個圖形,其中能表示從集合M到集合N的函數(shù)關(guān)系的是( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com