【題目】市政府招商引資,為吸引外商,決定第一個月產(chǎn)品免稅,某外資廠該第一個月A型產(chǎn)品出廠價為每件10元,月銷售量為6萬件;第二個月,當(dāng)?shù)卣_始對該商品征收稅率為 ,即銷售1元要征收元)的稅收,于是該產(chǎn)品的出廠價就上升到每件元,預(yù)計(jì)月銷售量將減少p萬件.

1)將第二個月政府對該商品征收的稅收y(萬元)表示成p的函數(shù),并指出這個函數(shù)的定義域;

2)要使第二個月該廠的稅收不少于1萬元,則p的范圍是多少?

3)在第(2)問的前提下,要讓廠家本月獲得最大銷售金額,則p應(yīng)為多少?

【答案】1.定義域?yàn)?/span>.23

【解析】

1)求出月銷售收入,從而求出政府對該商品征收的稅收;
2)解不等式,求出的范圍即可;
3)求出廠家的銷售收入為,根據(jù)函數(shù)的單調(diào)性求出的最大值以及對應(yīng)的的值即可.

解:(1)依題意,第二個月該商品銷量為萬件,

月銷售收入為 萬元,

政府對該商品征收的稅收 (萬元).

所以所求函數(shù)為.

>0得,所求函數(shù)的定義域?yàn)?/span>;

2)由化簡得

,解得,

所以當(dāng),稅收不少于1萬元

3)第二個月,當(dāng)稅收不少于1萬元時,廠家的銷售收入為

因?yàn)?/span>在區(qū)間上是減函數(shù),

所以 (萬元).

所以當(dāng)時,廠家銷售金額最大.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn),圓.

1)若直線l且被圓C截得的弦長為,求直線l的方程;

2)點(diǎn),,點(diǎn)Q是圓C上的任意一點(diǎn),求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在一次社會實(shí)踐活動中,某數(shù)學(xué)調(diào)研小組根據(jù)車間持續(xù)5個小時的生產(chǎn)情況畫出了某種產(chǎn)品的總產(chǎn)量(單位:千克)與時間(單位:小時)的函數(shù)圖像,則以下關(guān)于該產(chǎn)品生產(chǎn)狀況的正確判斷是( ).

A.在前三小時內(nèi),每小時的產(chǎn)量逐步增加

B.在前三小時內(nèi),每小時的產(chǎn)量逐步減少

C.最后一小時內(nèi)的產(chǎn)量與第三小時內(nèi)的產(chǎn)量相同

D.最后兩小時內(nèi),該車間沒有生產(chǎn)該產(chǎn)品

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓,

1)若直線過定點(diǎn),且與圓C相切,求的方程.

2)若圓D的半徑為3,圓心在直線上,且與圓C外切,求圓D的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線,過拋物線上一點(diǎn)作兩條直線與分別相切于兩點(diǎn),分別交拋物線于兩點(diǎn).

(1)當(dāng)的角平分線垂直軸時,求直線的斜率;

(2)若直線軸上的截距為,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),,其中,.

(1)若,時,最小值是,求實(shí)數(shù)值;

(2)若,時,成立,求實(shí)數(shù)取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)在點(diǎn)處的切線方程為

1)求函數(shù)的解析式.

2)若方程個不同的根,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】袋中裝有紅球3個、白球2個、黑球1個,從中任取2個,則互斥而不對立的兩個事件是  

A. 至少有一個白球;都是白球 B. 至少有一個白球;至少有一個紅球

C. 至少有一個白球;紅、黑球各一個 D. 恰有一個白球;一個白球一個黑球

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】氣象意義上,從春季進(jìn)入夏季的標(biāo)志為:“連續(xù)5天的日平均溫度不低于22℃”.現(xiàn)有甲、乙、丙三地連續(xù)5天的日平均溫度的記錄數(shù)據(jù)(記錄數(shù)據(jù)都是正整數(shù)):

①甲地:5個數(shù)據(jù)的中位數(shù)為24,眾數(shù)為22;

②乙地:5個數(shù)據(jù)的中位數(shù)為27,總體均值為24;

③丙地:5個數(shù)據(jù)的中有一個數(shù)據(jù)是32,總體均值為26,總體方差為10.8;

則肯定進(jìn)入夏季的地區(qū)的有( )

A. ①②③ B. ①③ C. ②③ D.

查看答案和解析>>

同步練習(xí)冊答案