A. | $(1,\sqrt{2})$ | B. | $(1,\sqrt{3})$ | C. | $(\sqrt{2},2)$ | D. | $(\sqrt{3},2)$ |
分析 由已知利用余弦定理可求cosC=$\frac{\sqrt{2}}{2}$,結(jié)合范圍C∈(0,π),可求C,由正弦定理可得:a=$\frac{csinA}{sinC}$=2sinA,由題意sinA∈($\frac{\sqrt{2}}{2}$,1),即可得解.
解答 解:∵a2+b2=c2+$\sqrt{2}$ab,
∴cosC=$\frac{{a}^{2}+^{2}-{c}^{2}}{2ab}$=$\frac{\sqrt{2}ab}{2ab}$=$\frac{\sqrt{2}}{2}$,
∵C∈(0,π),
∴C=$\frac{π}{4}$,
∵c=$\sqrt{2}$,
∴由正弦定理可得:a=$\frac{csinA}{sinC}$=$\frac{\sqrt{2}sinA}{\frac{\sqrt{2}}{2}}$=2sinA,
∵A∈(0,$\frac{3π}{4}$),且滿足條件的△ABC有兩個(gè),可得sinA∈($\frac{\sqrt{2}}{2}$,1),
∴BC=a=2sinA∈($\sqrt{2}$,2).
故選:C.
點(diǎn)評(píng) 本題主要考查了余弦定理,正弦定理,正弦函數(shù)的圖象和性質(zhì)在解三角形中的應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,考查了數(shù)形結(jié)合思想,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 65輛 | B. | 76輛 | C. | 88 輛 | D. | 95輛 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | $\frac{1}{2}$ | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{n(2n-1)}{2}$ | B. | 2(2n2-n) | C. | $\frac{n^2}{2}$ | D. | 2n2-n |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | sinα | B. | -cosα | C. | cosα | D. | -sinα |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com