設(shè)為雙曲線的兩個焦點,點在雙曲線上且滿足,則的面積是(      )
A.1B.C.2D.
A
設(shè)|PF1|=x,|PF2|=y,根據(jù)根據(jù)雙曲線性質(zhì)可知x-y的值,再根據(jù)∠F1PF2=90°,求得x2+y2的值,進(jìn)而根據(jù)2xy=x2+y2-(x-y)2求得xy,進(jìn)而可求得△F1PF2的面積.
解:設(shè)|PF1|=x,|PF2|=y,(x>y)
根據(jù)雙曲線性質(zhì)可知x-y=4,
∵∠F1PF2=90°,
∴x2+y2=20
∴2xy=x2+y2-(x-y)2=4
∴xy=2
∴△F1PF2的面積為 xy=1
故答案為A
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知雙曲線的漸近線方程為, 并且焦距為20,則雙曲線的標(biāo)準(zhǔn)方程為 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

.若分別為雙曲線的左、右焦點,點在雙曲線上,點的坐標(biāo)為(2,0),的平分線.則的值為 (    ).
A.3 .B.6.C.9.D.27

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知點是雙曲線-=1右支上一點,是雙曲線的右焦點,點在直線上,若,則雙曲線的離心率
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

A、B是雙曲線x2-=1上的兩點,點N(1,2)是線段AB的中點
(1)求直線AB的方程;
(2)如果線段AB的垂直平分線與雙曲線相交于C、D兩點,那么A、B、C、D四點是否共圓?為什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知雙曲線的離心率為2,焦點到漸近線的距離為,點P的坐標(biāo)為(0,-2),過P的直線l與雙曲線C交于不同兩點M、N.  
(1)求雙曲線C的方程;
(2)設(shè)(O為坐標(biāo)原點),求t的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在△ABC中,AHBC邊上的高,,則過點C,以A,H為焦點的雙曲線的離心率為       

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知雙曲線中心在原點,右焦點與拋物線的焦點重合,則該雙曲線的離心率為___________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知兩地相距,在聽到炮彈的爆炸聲比在,假設(shè)爆炸聲速約為,若以方向為軸正方向,線段中點為原點建立直角坐標(biāo)系,則炮彈爆炸點的軌跡方程為            

查看答案和解析>>

同步練習(xí)冊答案