【題目】已知橢圓C:(a>b>0)的焦距為2,且過點.
(1)求橢圓C的方程;
(2)已知△BMN是橢圓C的內(nèi)接三角形,若坐標原點O為△BMN的重心,求點O到直線MN距離的最小值.
【答案】(1)(2)
【解析】
(1)由題意焦距的值可得c的值,再由橢圓過點,及a,b,c之間的關(guān)系求出a,b的值,進而求出橢圓的方程;
(2)分B的縱坐標為0和不為0兩種情況討論,設B的坐標,由O是三角形的重心可得MN的中點的坐標,設M,N的坐標,代入橢圓方程兩式相減可得直線MN的斜率,求出直線MN的方程,求出O到直線MN的距離的表達式,再由B的縱坐標的范圍求出d的取值范圍,進而求出d的最小值.
解:(1)由題意可得:橢圓的焦距為2,則,又橢圓過點
,解得:a2=4,b2=3,
所以橢圓的方程為:1;
(2)設B,記線段MN中點D,
因為O為BMN的重心,所以2,則點D的坐標為:,
若n=0,則|m|=2,此時直線MN與x軸垂直,
故原點O到直線MN的距離為,即為1,
若n≠0,此時直線MN的斜率存在,
設M(x1,y1),N(x2,y2),則x1+x2=﹣m,y1+y2=﹣n,
又1,1,
兩式相減0,
可得:kMN,
故直線MN的方程為:y(x),即6mx+8ny+3m2+4n2=0,
則點O到直線MN的距離d,
將1,代入得d,
因為0<n2≤3,所以dmin,又1,
故原點O到直線MN的距離的最小值為.
科目:高中數(shù)學 來源: 題型:
【題目】已知曲線的極坐標方程是,以極點為原點,極軸為軸的正半軸,建立平面直角坐標系,直線過點,傾斜角為.
(1)求曲線的直角坐標方程與直線l的參數(shù)方程;
(2)設直線與曲線交于,兩點,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】用代表紅球,代表藍球,代表黑球,由加法原理及乘法原理,從1個紅球和1個藍球中取出若干個球的所有取法可由的展開式表示出來,如:“1”表示一個球都不取、“”表示取出一個紅球,而“”用表示把紅球和藍球都取出來.以此類推,下列各式中,其展開式可用來表示從5個有區(qū)別的紅球、5個無區(qū)別的藍球、5個無區(qū)別的黑球中取出若干個球,且所有的藍球都取出或都不取出的所有取法的是( )
A.B.
C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知在上任意一點處的切線為,若過右焦點的直線交橢圓:于、兩點,在點處切線相交于.
(1)求點的軌跡方程;
(2)若過點且與直線垂直的直線(斜率存在且不為零)交橢圓于兩點,證明:為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在生活中,我們常看到各種各樣的簡易遮陽棚.現(xiàn)有直徑為的圓面,在圓周上選定一個點固定在水平的地面上,然后將圓面撐起,使得圓面與南北方向的某一直線平行,做成簡易遮陽棚.設正東方向射出的太陽光線與地面成角,若要使所遮陰影面的面積最大,那么圓面與陰影面所成角的大小為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】中國古代教育要求學生掌握“六藝”,即“禮、樂、射、御、書、數(shù)”.某校為弘揚中國傳統(tǒng)文化,舉行有關(guān)“六藝”的知識競賽.甲、乙、丙三位同學進行了決賽.決賽規(guī)則:決賽共分場,每場比賽的第一名、第二名、第三名的得分分別為,選手最后得分為各場得分之和,決賽結(jié)果是甲最后得分為分,乙和丙最后得分都為分,且乙在其中一場比賽中獲得第一名,現(xiàn)有下列說法:
①每場比賽第一名得分分;
②甲可能有一場比賽獲得第二名;
③乙有四場比賽獲得第三名;
④丙可能有一場比賽獲得第一名.
則以上說法中正確的序號是______.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線l:3x+4y+m=0,圓C:x2+y2-4x+2=0,則圓C的半徑r=_____;若在圓C上存在兩點A,B,在直線l上存在一點P,使得∠APB=90°,則實數(shù)m的取值范圍是____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com