分析 (Ⅰ)利用三角函數(shù)恒等變換的應用化簡函數(shù)解析式可得f(x)=2sin(2x+$\frac{π}{3}$),利用三角函數(shù)周期公式即可解得.
(Ⅱ)利用函數(shù)y=Asin(ωx+φ)的圖象變換可得g(x)=2sin(2x+$\frac{π}{6}$),可求2x+$\frac{π}{6}$∈[$\frac{π}{6}$,$\frac{7π}{6}$],利用正弦函數(shù)的圖象和性質(zhì)即可得解.
解答 (本小題滿分12分)
解:(Ⅰ)f(x)=2$\sqrt{3}$sin(x+$\frac{π}{4}$)•cos(x+$\frac{π}{4}$)-sin(2x+π)
=$\sqrt{3}$cos2x+sin2x …(3分)
=2sin(2x+$\frac{π}{3}$)…(5分)
于是T=π,…(6分)
(Ⅱ)由條件可得g(x)=f(x-$\frac{π}{12}$)=2sin(2x+$\frac{π}{6}$),…(8分)
由于x∈[0,$\frac{π}{2}$],∴2x+$\frac{π}{6}$∈[$\frac{π}{6}$,$\frac{7π}{6}$],…(10分)
∴sin(2x+$\frac{π}{6}$)∈[-$\frac{1}{2}$,1],…(11分)
∴g(x)=2sin(2x+$\frac{π}{6}$)∈[-1,2],
故函數(shù)g(x)在區(qū)間[0,$\frac{π}{2}$]上的最大值為2,最小值為-1.…(12分)
點評 本題主要考查了三角函數(shù)恒等變換的應用,三角函數(shù)周期公式,函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,正弦函數(shù)的圖象和性質(zhì)的綜合應用,考查了轉(zhuǎn)化思想,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $(0,\;\;\frac{1}{4}]$ | B. | $(0,\;\;\frac{1}{2}]$ | C. | (0,1) | D. | (0,2) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | x<y<z | B. | z<x<y | C. | z<y<x | D. | y<z<x |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com