3.(理)如圖,直線l1:y=m(0<m≤A)與函數(shù)f(x)=Acos(ωx+φ)(A>0,ω>0)的圖象相交于B、C兩點,直線l2:y=-m與函數(shù)f(x)=Acos(ωx+φ)(A>0,ω>0)的圖象相交于D、E兩點,設(shè)B(xB,yB),D(x,yD),記S(m)=|xB-xD|,則S(m)的圖象大致是(  )
A.B.C.D.

分析 根據(jù)三角函數(shù)既是軸對稱圖形,又是中心對稱圖形的特點分析四點的對稱關(guān)系,得出結(jié)論.

解答 解:設(shè)B,C兩點關(guān)于直線x=a對稱,D,E兩點關(guān)于直線x=b對稱,f(x)的最小正周期為T,
則b-a=$\frac{1}{2}$T,
∵f(x)圖象是中心對稱圖形,設(shè)f(x)的對稱中心為(c,0),
則xE=2c-xB,xD=2c-xC,
∴xE-xD=xC-xB,
∵f(x)是軸對稱圖形,
∴a-xB=b-xD,
∴|xB-xD|=b-a=$\frac{1}{2}$T,
故S(m)是常數(shù)函數(shù),
故選B.

點評 本題考查了三角函數(shù)的圖象與性質(zhì),屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

13.用向量法證明以下各題:
(1)三角形三條中線共點;
(2)P是△ABC重心的充要條件是$\overrightarrow{PA}$+$\overrightarrow{PB}$+$\overrightarrow{PC}$=$\overrightarrow{0}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.設(shè)橢圓E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的長軸長為6,離心率$e=\frac{{\sqrt{6}}}{3}$,O為坐標原點.
(Ⅰ)求橢圓E標準方程;
(Ⅱ)如圖,若分別過橢圓E的左右焦點F1,F(xiàn)2的動直線l1,l2相交于P點,與橢圓分別交于A、B與C、D不同四點,直線OA、OB、OC、OD的斜率k1、k2、k3、k4滿足k1+k2=k3+k4.是否存在定點M、N,使得|PM|+|PN|為定值.存在,求出M、N點坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.設(shè)f(x)是定義在R上周期為2的奇函數(shù),當0≤x≤1時,f(x)=x2-x,則$f({-\frac{5}{2}})$=( 。
A.$-\frac{1}{4}$B.$-\frac{1}{2}$C.$\frac{1}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.在平面四邊形ABCD中,AB=3,AC=12,cos∠BAC=$\frac{29}{36}$,$\overrightarrow{AD}$•$\overrightarrow{CD}$=0,則BD的最大值為10.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.(理) 如圖,在平面直角坐標系xoy中,點A(x1,y1),B(x2,y2)在單位圓上,∠xOA=α,$α∈(\frac{π}{6},\frac{π}{2})$,$∠AOB=\frac{π}{3}$.
(1)若$cos(α+\frac{π}{4})=-\frac{3}{5}$,求x1的值;
(2)過點A作x軸的垂線交單位圓于另一點C,過B作x軸的垂線,垂足為D,記△AOC的面積為S1,△BOD的面積為S2,設(shè)f(α)=S1+S2,求函數(shù)f(α)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.設(shè)公比q>0的等比數(shù)列{an}的前n項和為Sn,且a1=1,S4=5S2,數(shù)列{bn}的前n項和為Tn,滿足b1=1,Tn=n2bn,n∈N*.
(Ⅰ)求數(shù)列{an}、{bn}的通項公式;
(Ⅱ)設(shè)Cn=(Sn+1)(nbn-λ),若Cn+1<Cn,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知α,β為銳角,tan$\frac{α}{2}$=$\frac{1}{3}$,cos(α-β)=-$\frac{4}{5}$.
(1)求sinα;
(2)求2α+β.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.如圖,已知多面體EABCDF的底面ABCD是邊長為2的正方形,EA⊥底面ABCD,F(xiàn)D∥EA,且$FD=\frac{1}{2}EA=1$.
(Ⅰ)記線段BC的中點為K,在平面ABCD內(nèi)過點K作一條直線與平面ECF平行,要求保留作圖痕跡,但不要求證明.
(Ⅱ)求直線EB與平面ECF所成角的正弦值.

查看答案和解析>>

同步練習冊答案