分析 (1)利用平面向量的三角形法則和共線原理證明其中兩中線的交點在第三條中線上即可;
(2)根據(jù)向量的共線原理證明P在三條中線上即可.
解答 (1)證明:在△ABC中,設D、E、F分別為BC、AC、AB的中點,BE與AD的交點為G,
設$\overrightarrow{BA}$=$\overrightarrow{{e}_{1}}$,$\overrightarrow{BC}$=$\overrightarrow{{e}_{2}}$,則$\overrightarrow{CA}$=$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$,$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$不共線,
$\overrightarrow{AD}$=$\frac{1}{2}$($\overrightarrow{AB}+\overrightarrow{AC}$)=$\frac{1}{2}$$\overrightarrow{{e}_{2}}$-$\overrightarrow{{e}_{1}}$,$\overrightarrow{BE}$=$\frac{1}{2}$($\overrightarrow{AB}+\overrightarrow{AC}$)=$\frac{1}{2}\overrightarrow{{e}_{1}}$+$\frac{1}{2}$$\overrightarrow{{e}_{2}}$,
設$\overrightarrow{BG}$=λ$\overrightarrow{BE}$,則$\overrightarrow{AG}$=$\overrightarrow{BG}$-$\overrightarrow{BA}$=λ$\overrightarrow{BE}$-$\overrightarrow{BA}$=($\frac{λ}{2}$-1)$\overrightarrow{{e}_{1}}$+$\frac{λ}{2}$$\overrightarrow{{e}_{2}}$,
∵$\overrightarrow{AG}$,$\overrightarrow{AD}$共線,∴$\frac{-1}{\frac{λ}{2}-1}=\frac{\frac{1}{2}}{\frac{λ}{2}}$,解得λ=$\frac{2}{3}$.
∴$\overrightarrow{CG}$=$\overrightarrow{BG}$-$\overrightarrow{BC}$=$\frac{1}{3}$$\overrightarrow{{e}_{1}}$-$\frac{2}{3}$$\overrightarrow{{e}_{2}}$,
∴$\overrightarrow{CF}$=$\overrightarrow{BF}-\overrightarrow{BC}$=$\frac{3}{2}$($\frac{1}{3}$$\overrightarrow{{e}_{1}}$-$\frac{2}{3}$$\overrightarrow{{e}_{2}}$)=$\frac{3}{2}$$\overrightarrow{CG}$.
∴CG與CF共線,G在CF上,
∴三角形三條中線交與一點.
(2)證明:設D、E、F分別為BC、AC、AB的中點,
①若P是△ABC的重心,∴AP=2PD,即$\overrightarrow{PA}$=-2$\overrightarrow{PD}$,
又D是BC的中點,∴$\overrightarrow{PB}+\overrightarrow{PC}$=2$\overrightarrow{PD}$,
∴$\overrightarrow{PA}+\overrightarrow{PB}+\overrightarrow{PC}$=$\overrightarrow{0}$.
②若$\overrightarrow{PA}+\overrightarrow{PB}+\overrightarrow{PC}$=$\overrightarrow{0}$,則$\overrightarrow{PB}+\overrightarrow{PC}$=-$\overrightarrow{PA}$.
又D是BC的中點,∴$\overrightarrow{PB}+\overrightarrow{PC}$=2$\overrightarrow{PD}$,
∴$\overrightarrow{PA}=-2\overrightarrow{PD}$,即P在中線AD上,
同理可證P在中線BE上,P在CF上,
∴P是三角形的重心.
綜上,P是△ABC重心的充要條件是$\overrightarrow{PA}$+$\overrightarrow{PB}$+$\overrightarrow{PC}$=$\overrightarrow{0}$.
點評 本題考查了平面向量在幾何證明中的應用,屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{2-i}{10}$ | B. | $\frac{1+i}{10}$ | C. | $\frac{4+7i}{10}$ | D. | $\frac{4-i}{10}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (0,$\frac{4}{9}$) | B. | [0,$\frac{1}{3}$) | C. | (-2,0) | D. | ($\frac{1}{3}$,$\frac{4}{9}$) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | $1+\frac{1}{2}$ | C. | $1+\frac{1}{2}+\frac{1}{3}$ | D. | $1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | f(x)在(0,$\frac{π}{4}$)上單調遞減 | B. | f(x)在($\frac{π}{8}$,$\frac{3π}{8}$)上單調遞減 | ||
C. | f(x)在(0,$\frac{π}{4}$)上單調遞增 | D. | f(x)在($\frac{π}{8}$,$\frac{3π}{8}$)上單調遞增 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com