分析 (I)由題意可得:2c=2$\sqrt{3}$,e=$\frac{c}{a}$=$\frac{\sqrt{3}}{2}$,又a2=b2+c2,聯(lián)立解出即可得出.
(II)設P(x0,y0),Q(x1,y1),可得A(-x0,-y0),C(x0,0),Q(x0,-y0),D$({x}_{0},-\frac{1}{2}{y}_{0})$.利用斜率計算公式可得kAD=$\frac{{y}_{0}}{4{x}_{0}}$.直線AD的方程為:y=$\frac{{y}_{0}}{4{x}_{0}}$(x+x0)-y0,與橢圓方程聯(lián)立化為:$(4{x}_{0}^{2}+{y}_{0}^{2})$x2-6${x}_{0}{y}_{0}^{2}$x+9${x}_{0}^{2}{y}_{0}^{2}$-16${x}_{0}^{2}$=0.利用根與系數(shù)的關系及其斜率計算公式可得kPB=$\frac{{y}_{1}-{y}_{0}}{{x}_{1}-{x}_{0}}$.kPA,只要證明.kPB•kPA=-1,即可證明點P在以AB為直徑的圓上.
解答 解:(I)由題意可得:2c=2$\sqrt{3}$,e=$\frac{c}{a}$=$\frac{\sqrt{3}}{2}$,又a2=b2+c2,聯(lián)立解得a=2,c=$\sqrt{3}$,b=1.
∴橢圓E的方程為$\frac{{x}^{2}}{4}+{y}^{2}$=1.
(II)設P(x0,y0),Q(x1,y1),則A(-x0,-y0),C(x0,0),Q(x0,-y0),∴D$({x}_{0},-\frac{1}{2}{y}_{0})$.
kAD=$\frac{-\frac{{y}_{0}}{2}-(-{y}_{0})}{{x}_{0}-(-{x}_{0})}$=$\frac{{y}_{0}}{4{x}_{0}}$.∴直線AD的方程為:y=$\frac{{y}_{0}}{4{x}_{0}}$(x+x0)-y0,
聯(lián)立$\left\{\begin{array}{l}{y=\frac{{y}_{0}}{4{x}_{0}}(x+{x}_{0})-{y}_{0}}\\{{x}^{2}+4{y}^{2}=4}\end{array}\right.$,化為:$(4{x}_{0}^{2}+{y}_{0}^{2})$x2-6${x}_{0}{y}_{0}^{2}$x+9${x}_{0}^{2}{y}_{0}^{2}$-16${x}_{0}^{2}$=0.
∴x1+(-x0)=$\frac{6{x}_{0}{y}_{0}^{2}}{4{x}_{0}^{2}+{y}_{0}^{2}}$,即x1=x0+$\frac{6{x}_{0}{y}_{0}^{2}}{4{x}_{0}^{2}+{y}_{0}^{2}}$,
而y1=$\frac{{y}_{0}}{4{x}_{0}}$(x1+x0)-y0,∴而y1=$\frac{{y}_{0}}{4{x}_{0}}$($\frac{6{x}_{0}{y}_{0}^{2}}{4{x}_{0}^{2}+{y}_{0}^{2}}$+2x0)-y0=$\frac{{y}_{0}^{2}-2{x}_{0}^{2}{y}_{0}}{4{x}_{0}^{2}+{y}_{0}^{2}}$.
∴kPB=$\frac{{y}_{1}-{y}_{0}}{{x}_{1}-{x}_{0}}$=$\frac{\frac{{y}_{0}^{2}-2{x}_{0}^{2}{y}_{0}}{4{x}_{0}^{2}+{y}_{0}^{2}}-{y}_{0}}{\frac{6{x}_{0}{y}_{0}^{2}}{4{x}_{0}^{2}+{y}_{0}^{2}}}$=-$\frac{{x}_{0}}{{y}_{0}}$.
∴kPA=$\frac{-{y}_{0}-{y}_{0}}{-{x}_{0}-{x}_{0}}$=$\frac{{y}_{0}}{{x}_{0}}$,
∴.kPB•kPA=-1,故PA⊥PB,
∴點P在以AB為直徑的圓上.
點評 本題考查了橢圓的標準方程及其性質、直線與橢圓相交問題、一元二次方程的根與系數(shù)的關系、斜率計算公式、直線垂直與斜率的關系,考查了推理能力與計算能力,屬于難題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 關于直線x=$\frac{π}{12}$對稱 | B. | 關于直線x=$\frac{5π}{12}$對稱 | ||
C. | 關于點($\frac{π}{12}$,0)對稱 | D. | 關于點($\frac{5π}{12}$,0)對稱 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com