【題目】已知函數(shù)

(1)當(dāng)時(shí),求函數(shù)的單調(diào)遞增區(qū)間;

(2)在區(qū)間內(nèi)至少存在一個(gè)實(shí)數(shù),使得成立,求實(shí)數(shù)的取值范圍.

【答案】(1)單調(diào)遞增區(qū)間是;(2).

【解析】試題分析:(1)先確定函數(shù),然后對(duì)函數(shù)進(jìn)行求導(dǎo),利用導(dǎo)數(shù)的正負(fù)建立不等式,求得函數(shù)的單調(diào)性與單調(diào)區(qū)間;(2)先對(duì)函數(shù)進(jìn)行求導(dǎo),然后通過(guò)分類(lèi)討論,確定函數(shù)的單調(diào)性,求得函數(shù)的最小值,利用最小值小于0,建立不等式,求解不等式,得到實(shí)數(shù)的取值范圍.

試題解析:(1)當(dāng)時(shí), ,,,

所以函數(shù)上為增函數(shù),

即函數(shù)的單調(diào)遞增區(qū)間是.

(2) ,

當(dāng),時(shí), [1,2]恒成立,

[1,2]上為增函數(shù),,

所以,這與矛盾.

當(dāng),時(shí),,;

,所以當(dāng)時(shí), 取得最小值,

因此,,可得,

這與矛盾.

當(dāng),時(shí), [1,2]恒成立, [1,2]上為減函數(shù),

所以,

所以,解得,滿(mǎn)足.

綜上所述,實(shí)數(shù)的取值范圍為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】平面α外有兩條直線(xiàn)mn,如果mn在平面α內(nèi)的投影分別是m1n1,給出下列四個(gè)命題:①m1n1mn;②mnm1n1;③m1n1相交mn相交或重合;④m1n1平行mn平行或重合.其中不正確的命題個(gè)數(shù)是(  )

A. 1 B. 2

C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AC是圓O的直徑,點(diǎn)B在圓O上,∠BAC30°,BMAC于點(diǎn)MEA⊥平面ABC,FCEAAC4,EA3FC1.

(1)證明:EMBF;

(2)求平面BEF與平面ABC所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于集合,定義了一種運(yùn)算,使得集合中的元素間滿(mǎn)足條件:如果存在元素,使得對(duì)任意,都有,則稱(chēng)元素是集合對(duì)運(yùn)算的單位元素.例如: ,運(yùn)算為普通乘法;存在,使得對(duì)任意,都有,所以元素是集合對(duì)普通乘法的單位元素.

下面給出三個(gè)集合及相應(yīng)的運(yùn)算

,運(yùn)算為普通減法;

{表示階矩陣, },運(yùn)算為矩陣加法;

(其中是任意非空集合),運(yùn)算為求兩個(gè)集合的交集.

其中對(duì)運(yùn)算有單位元素的集合序號(hào)為( )

A. ①②; B. ①③; C. ①②③ D. ②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖, 為圓的直徑,點(diǎn), 在圓上, ,矩形和圓所在的平面互相垂直,已知,

(Ⅰ)求證:平面平面;

(Ⅱ)當(dāng)的長(zhǎng)為何值時(shí),二面角的大小為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖, 為圓柱的母線(xiàn), 是底面圓的直徑, 的中點(diǎn).

(Ⅰ)問(wèn): 上是否存在點(diǎn)使得平面?請(qǐng)說(shuō)明理由;

(Ⅱ)在(Ⅰ)的條件下,若平面,假設(shè)這個(gè)圓柱是一個(gè)大容器,有條體積可以忽略不計(jì)的小魚(yú)能在容器的任意地方游弋,如果小魚(yú)游到四棱錐外會(huì)有被捕的危險(xiǎn),求小魚(yú)被捕的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù), ).

(1)當(dāng)時(shí),若函數(shù)的圖象在處有相同的切線(xiàn),求的值;

(2)當(dāng)時(shí),若對(duì)任意和任意,總存在不相等的正實(shí)數(shù),使得,求的最小值;

(3)當(dāng)時(shí),設(shè)函數(shù)的圖象交于 兩點(diǎn).求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四棱錐PABCD中,ADBC,平面PAC⊥平面ABCD,AB=AD=DC=1

ABC=DCB=60,EPC上一點(diǎn).

Ⅰ)證明:平面EAB⊥平面PAC

Ⅱ)若△PAC是正三角形,EPC中點(diǎn),求三棱錐AEBC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司為了解用戶(hù)對(duì)其產(chǎn)品的滿(mǎn)意度,從A、B兩地區(qū)分別隨機(jī)調(diào)查了20個(gè)用戶(hù),得到用戶(hù)對(duì)產(chǎn)品的滿(mǎn)意度評(píng)分如下:

A地區(qū):

62

73

81

92

95

85

74

64

53

76


78

86

95

66

97

78

88

82

76

89

B地區(qū):

73

83

62

51

91

46

53

73

64

82


93

48

95

81

74

56

54

76

65

79

)根據(jù)兩組數(shù)據(jù)完成兩地區(qū)用戶(hù)滿(mǎn)意度評(píng)分的莖葉圖,并通過(guò)莖葉圖比較兩地區(qū)滿(mǎn)意度的平均值及分散程度(不要求算出具體值,給出結(jié)論即可):

)根據(jù)用戶(hù)滿(mǎn)意度評(píng)分,將用戶(hù)的滿(mǎn)意度從低到高分為三個(gè)等級(jí):

滿(mǎn)意度評(píng)分

低于70

70分到89

不低于90

滿(mǎn)意度等級(jí)

不滿(mǎn)意

滿(mǎn)意

非常滿(mǎn)意

記事件C“A地區(qū)用戶(hù)的滿(mǎn)意度等級(jí)高于B地區(qū)用戶(hù)的滿(mǎn)意度等級(jí),假設(shè)兩地區(qū)用戶(hù)的評(píng)價(jià)結(jié)果相互獨(dú)立,根據(jù)所給數(shù)據(jù),以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率,求C的概率。

查看答案和解析>>

同步練習(xí)冊(cè)答案