【題目】如圖,AC是圓O的直徑,點(diǎn)B在圓O上,∠BAC=30°,BM⊥AC于點(diǎn)M,EA⊥平面ABC,FC∥EA,AC=4,EA=3,FC=1.
(1)證明:EM⊥BF;
(2)求平面BEF與平面ABC所成的銳二面角的余弦值.
【答案】(1)證明見解析;(2).
【解析】試題分析:(1)要證線線垂直,一般是用線面垂直的性質(zhì)定理,先證線面垂直,本題從圖中看,想象能不能證明,為此要證,對(duì),因?yàn)?/span>是在平面上的射影,且,從而有,對(duì),可通過求出的三邊長(zhǎng),由勾股定理得結(jié)論;當(dāng)然結(jié)合第(2)小題求二面角,我們還可以以A為坐標(biāo)原點(diǎn),過點(diǎn)A垂直于AC的直線為x軸,AC、AE所在的直線分別為y、z軸建立空間直角坐標(biāo)系.通過向量法證明線線垂直,(2)通過二面角的兩個(gè)面的法向量來求得二面角.
試題解析:(1)證法一:,,又∵BM⊥AC,
①
而,,
即
∴②③
由①②③得,∴EM⊥BF
證法二:在Rt△ABC中,AC=4,∠BAC=30°
∴AB=2,BC=2,又BM⊥AC
則AM=3,BM=.
如圖,以A為坐標(biāo)原點(diǎn),過點(diǎn)A垂直于AC的直線為x軸,AC、AE所在的直線分別為y、z軸
建立空間直角坐標(biāo)系.
由已知條件得A(0,0,0),M(0,3,0),E(0,0,3),B(,3,0),F(0,4,1),
∴=(0,-3,3),=(-,1,1).
由·=(0,-3,3)·(-,1,1)=0,
得⊥,∴EM⊥BF.
(2)解:由(1)知=(-,-3,3),=(-,1,1).
設(shè)平面BEF的法向量為n=(x,y,z),
由n·=0,n·=0,得
令x=得y=1,z=2,∴n=(,1,2),
由已知EA⊥平面ABC,
所以取面ABC的法向量為=(0,0,3),
設(shè)平面BEF與平面ABC所成的銳二面角為θ,
則,
平面BEF與平面ABC所成的銳二面角的余弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ex-ax2(x∈R),e=2.718 28…為自然對(duì)數(shù)的底數(shù).
(1)求函數(shù)f(x)在點(diǎn)P(0,1)處的切線方程;
(2)若函數(shù)f(x)為R上的單調(diào)遞增函數(shù),試求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)是定義域?yàn)?/span>R的周期函數(shù),最小正周期為2,且
f(1+x)=f(1-x),當(dāng)-1≤x≤0時(shí),f(x)=-x.
(1)判斷f(x)的奇偶性;
(2)試求出函數(shù)f(x)在區(qū)間[-1,2]上的表達(dá)式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在(0,+∞)上的單調(diào)函數(shù)f(x),x∈(0,+∞),f[f(x)﹣lnx]=1,則方程f(x)﹣f′(x)=1的解所在區(qū)間是 ( 。
A. (2,3) B. C. D. (1,2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)圖象上不同兩點(diǎn), 處切線的斜率分別是, ,規(guī)定(為線段的長(zhǎng)度)叫做曲線在點(diǎn)與之間的“彎曲度”,給出以下命題:
①函數(shù)圖象上兩點(diǎn)與的橫坐標(biāo)分別為1和2,則;
②存在這樣的函數(shù),圖象上任意兩點(diǎn)之間的“彎曲度”為常數(shù);
③設(shè)點(diǎn), 是拋物線上不同的兩點(diǎn),則;
④設(shè)曲線(是自然對(duì)數(shù)的底數(shù))上不同兩點(diǎn), ,且,若恒成立,則實(shí)數(shù)的取值范圍是.
其中真命題的序號(hào)為__________.(將所有真命題的序號(hào)都填上)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的五面體中, , , ,四邊形為正方形,平面平面.
(1)證明:在線段上存在一點(diǎn),使得平面;
(2)求的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某城市隨機(jī)抽取一年(365天)內(nèi)100天的空氣質(zhì)量指數(shù)(Air Pollution Index)的監(jiān)測(cè)數(shù)據(jù),結(jié)果統(tǒng)計(jì)如下:
大于300 | |||||||
空氣質(zhì)量 | 優(yōu) | 良 | 輕微污染 | 輕度污染 | 中度污染 | 中度重 污染 | 重度污染 |
天數(shù) | 10 | 15 | 20 | 30 | 7 | 6 | 12 |
(Ⅰ)若本次抽取的樣本數(shù)據(jù)有30天是在供暖季,其中有7天為重度污染,完成下面列聯(lián)表,并判斷能否有的把握認(rèn)為該市本年空氣重度污染與供暖有關(guān)?
非重度污染 | 重度污染 | 合計(jì) | |
供暖季 | |||
非供暖季 | |||
合計(jì) | 100 |
0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
1.323 | 2.072 | 2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
附:
(Ⅱ)政府要治理污染,決定對(duì)某些企業(yè)生產(chǎn)進(jìn)行管控,當(dāng)在區(qū)間時(shí)企業(yè)正常生產(chǎn);當(dāng)在區(qū)間時(shí)對(duì)企業(yè)限產(chǎn)(即關(guān)閉的產(chǎn)能),當(dāng)在區(qū)間時(shí)對(duì)企業(yè)限產(chǎn),當(dāng)在300以上時(shí)對(duì)企業(yè)限產(chǎn),企業(yè)甲是被管控的企業(yè)之一,若企業(yè)甲正常生產(chǎn)一天可得利潤(rùn)2萬元,若以頻率當(dāng)概率,不考慮其他因素:
①在這一年中隨意抽取5天,求5天中企業(yè)被限產(chǎn)達(dá)到或超過的恰為2天的概率;
②求企業(yè)甲這一年因限產(chǎn)減少的利潤(rùn)的期望值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)當(dāng)時(shí),求函數(shù)的單調(diào)遞增區(qū)間;
(2)在區(qū)間內(nèi)至少存在一個(gè)實(shí)數(shù),使得成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知直線與橢圓交于點(diǎn), (在軸上方),且.設(shè)點(diǎn)在軸上的射影為,三角形的面積為2(如圖1).
(1)求橢圓的方程;
(2)設(shè)平行于的直線與橢圓相交,其弦的中點(diǎn)為.
①求證:直線的斜率為定值;
②設(shè)直線與橢圓相交于兩點(diǎn), (在軸上方),點(diǎn)為橢圓上異于, , , 一點(diǎn),直線交于點(diǎn), 交于點(diǎn),如圖2,求證: 為定值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com