分析 設直線方程為$\frac{x}{a}$+$\frac{y}{a}$=1或$\frac{x}{a}$-$\frac{y}{a}$=1,把點(3,2)代入直線方程解a可得.
解答 解:由題意設直線方程為$\frac{x}{a}$+$\frac{y}{a}$=1或$\frac{x}{a}$-$\frac{y}{a}$=1,把點(3,2)代入直線方程得$\frac{3}{a}$+$\frac{2}{a}$=1或得$\frac{3}{a}$-$\frac{2}{a}$=1
解得a=1,或a=5,
所以所求的直線為:x-y-1=0或x+y-5=0
故答案為:x-y-1=0或x+y-5=0.
點評 本題考查用截距式求直線的方程,體現(xiàn)了分類討論的數(shù)學思想,設出直線方程是解決問題的關(guān)鍵,屬基礎(chǔ)題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 10 | B. | 19 | C. | 20 | D. | 30 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ¬p:?x∈(0,+∞),3x-cosx≤0 | B. | ¬p:?x∈(0,+∞),3x-cosx<0 | ||
C. | ¬p:?x∈(-∞,0],3x-cosx≤0 | D. | ¬p是假命題 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 函數(shù)f(x)在區(qū)間$(0,\frac{2}{3}π)$上單調(diào)遞增 | |
B. | 直線$x=\frac{π}{8}$是函數(shù)y=f(x)圖象的一條對稱軸 | |
C. | 點$(\frac{π}{4},0)$是函數(shù)y=f(x)圖象的一個對稱中心 | |
D. | 將函數(shù)y=f(x)的圖象向左平移$\frac{π}{8}$個單位,可得到$y=\sqrt{2}sin2x$的圖象 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{8}{3}$ | B. | $\frac{11}{6}$ | C. | $\frac{11}{3}$ | D. | $\frac{5}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com