精英家教網 > 高中數學 > 題目詳情

球面上有三點A、BC,組成這個球的截面圓的內接三角形,AB=18,BC=24,AC=30.且球心到ABC所在平面的距離為球半徑的一半,那么這個球的半徑等于 (    )

(A)         (B) 10              (C)       (D) 12

 

答案:C
提示:

    AB2+BC2=182+242=302=CA2, ABC=90°,

ABC平面,OA=OB=OC

AC中點,在Rt中,,

 


練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

球O球面上有三點A、B、C,已知AB=18,BC=24,AC=30,且球半徑是球心O到平面ABC的距離的2倍,求球O的表面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

表面積為16π的球面上有三點A、B、C,∠ACB=60°,AB=
3
,則球心到截面ABC的距離及B、C兩點間球面距離最大值分別為( 。
A、3,
3
B、
3
,
π
3
C、
3
3
D、3,
π
3

查看答案和解析>>

科目:高中數學 來源: 題型:

半徑為1的球面上有三點A、B、C,其中AB=1,BC=
3
,A、C兩點間的球面距離為
π
2
,則球心到平面ABC的距離為( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知球面上有三點A、B、C,此三點構成一個邊長為l的等邊三角形,球心到平面ABC的距離等于球半徑
1
3
,則球半徑是
6
4
6
4

查看答案和解析>>

科目:高中數學 來源: 題型:

半徑為1的球面上有三點A,B,C,若A和B,A和C,B和C的球面距離都是
π
2
,過A、B、C三點做截面,則球心到面的距離為
3
3
3
3

查看答案和解析>>

同步練習冊答案