分析 求出曲線的導(dǎo)數(shù),利用導(dǎo)數(shù)值為2,求出切點(diǎn)坐標(biāo),然后求解曲線y=ln2x到直線2x-y+1=0距離的最小值.
解答 解:曲線y=ln2x到直線2x-y+1=0距離的最小值,
就是與直線2x-y+1=0平行的直線與曲線y=ln2x相切是的切點(diǎn)坐標(biāo)與直線的距離,
曲線y=ln2x的導(dǎo)數(shù)為:y′=$\frac{1}{x}$,切點(diǎn)坐標(biāo)為(a,f(a)),可得$\frac{1}{a}=2$,
解得a=$\frac{1}{2}$,f($\frac{1}{2}$)=0,
切點(diǎn)坐標(biāo)為:($\frac{1}{2}$,0),
曲線y=ln2x到直線2x-y+1=0距離的最小值為:$\frac{|2×\frac{1}{2}-0+1|}{\sqrt{{2}^{2}+(-1)^{2}}}$=$\frac{2\sqrt{5}}{5}$.
故答案為:$\frac{2\sqrt{5}}{5}$.
點(diǎn)評 本題考查函數(shù)的導(dǎo)數(shù)的應(yīng)用,切線方程的求法,點(diǎn)到直線的距離公式的應(yīng)用,考查轉(zhuǎn)化思想以及計(jì)算能力.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (2)(3) | B. | (1)(2)(3) | C. | (2)(4) | D. | (2)(3)(4) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 都平行 | B. | 都相交 | ||
C. | 在兩平面內(nèi) | D. | 至少和其中一個(gè)平行 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-1,0) | B. | [-1,0] | C. | (-∞,-1)∪(0,+∞) | D. | (-∞,-1]∪[0,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{3}\root{3}{36}$ | B. | $\frac{2}{3}\root{3}{9}$ | C. | $\frac{1}{3}\sqrt{36}$ | D. | $\frac{2}{3}\sqrt{9}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ①③ | B. | ②④ | C. | ①④ | D. | ②③ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com