19.f(x)=sinx+cosx,則${∫}_{-\frac{π}{2}}^{\frac{π}{2}}$f(x)dx=$\frac{3+\sqrt{3}}{2}$.

分析 求出被積函數(shù)的原函數(shù),然后分別代入積分上限和積分下限后作差得答案.

解答 解:f(x)=sinx+cosx,
則${∫}_{-\frac{π}{3}}^{\frac{π}{2}}$f(x)dx=(-cosx+sinx)|${\;}_{-\frac{π}{3}}^{\frac{π}{2}}$=(-0+1)-(-$\frac{1}{2}$-$\frac{\sqrt{3}}{2}$)=$\frac{3+\sqrt{3}}{2}$,
故答案為:$\frac{3+\sqrt{3}}{2}$

點評 本題考查定積分,關(guān)鍵是求出被積函數(shù)的原函數(shù),是基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

9.設(shè)函數(shù)f(x)=$\frac{{x}^{3}}{{e}^{x}}$,x∈R.
(1)求函數(shù)f(x)的單調(diào)區(qū)間及極值;
(2)設(shè)g(x)=ex•f′(x)(f′(x)是f(x)的導函數(shù)),關(guān)于x的不等式g(x)>ax+b對任意的實數(shù)x∈[1,3]及任意的示數(shù)b∈[2,4]恒成立,求實數(shù)a的取值范圍;
(3)設(shè)兩不相等的實數(shù)a,b滿足:a3eb=b3ea,求證:a+b>6.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知函數(shù)f(x)=$\frac{ex}{{e}^{x}}$.
(Ⅰ)求函數(shù)f(x)極值;
(Ⅱ)若直線y=ax+b是函數(shù)f(x)的切線,求a-b的最大值;
(Ⅲ)若方程f(x)=m存在兩個實數(shù)根x1,x2,且x1+x2=2x0
①求證:0<m<1;
②問:函數(shù)f(x)圖象上在點(x0,f(x0))處的切線是否能平行x軸?若存在,求出該切線;若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.已知函數(shù)$f(x)=\left\{\begin{array}{l}sinπx\;,\;\;-1≤x<0\\ f({x-1})+1\;,\;\;x≥0\end{array}\right.$.當x∈[n,n+1),n≥-1,n∈Z時,用x和n表示的f(x)=sin[(x-n-1)]π+n+1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.為了廢物利用,準備把半徑為2,圓心角為$\frac{π}{3}$的扇形鐵片余料剪成如圖所示的內(nèi)接矩形ABCD.試用圖中α表出內(nèi)接矩形ABCD的面積S.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知$\overrightarrow{m}$=(2$\sqrt{3}$,1),$\overrightarrow{n}$=(cos2$\frac{A}{2}$,sinA),A,B,C是△ABC的內(nèi)角.
(1)當A∈(0,$\frac{π}{2}$)時,求|$\overrightarrow{n}$|的取值范圍;
(2)若C=$\frac{2π}{3}$,AB=3,當$\overrightarrow{m}$•$\overrightarrow{n}$取最大值時,求A的大小及邊BC的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.(1)解關(guān)于x的方程loga(3x-1)=loga(x-1)+loga(3+x),(a>0且a≠1);
(2)求值:lg5+lg2-(-$\frac{1}{3}}$)-2+(${\sqrt{2}-1}$)0+log28.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.在復平面內(nèi),復數(shù)$\frac{2-i}{1+i}$(i是虛數(shù)單位)對應(yīng)的點位于( 。
A.第四象限B.第三象限C.第二象限D.第一象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知F1、F2分別是橢圓E的左右焦點,A為左頂點,P為橢圓E上的點,以PF1為直徑的圓經(jīng)過F2,若$|{P{F_2}}|=\frac{1}{4}|{A{F_2}}|$,則橢圓E的離心率為(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{3}{4}$

查看答案和解析>>

同步練習冊答案