14.為了廢物利用,準(zhǔn)備把半徑為2,圓心角為$\frac{π}{3}$的扇形鐵片余料剪成如圖所示的內(nèi)接矩形ABCD.試用圖中α表出內(nèi)接矩形ABCD的面積S.

分析 先用所給的角表示AB,BC,即可將矩形的面積表示出來,建立三角函數(shù)模型.

解答 解:如圖,在Rt△OBC中,OB=2cosα,BC=2sinα,
在Rt△OAD中,OA=$\frac{\sqrt{3}}{3}$DA=$\frac{2\sqrt{3}}{3}$sinα.
所以AB=OB-OA=2cosα-$\frac{2\sqrt{3}}{3}$sinα.
設(shè)矩形ABCD的面積為S,則S=AB•BC=(2cosα-$\frac{2\sqrt{3}}{3}$sinα)•2sinα=4sinαcosα-$\frac{4\sqrt{3}}{3}$sin2α
=2sin2α+$\frac{2\sqrt{3}}{3}$cos2α-$\frac{2\sqrt{3}}{3}$=$\frac{4\sqrt{3}}{3}$($\frac{\sqrt{3}}{2}$sin2α+$\frac{1}{2}$cos2α)-$\frac{2\sqrt{3}}{3}$
=$\frac{4\sqrt{3}}{3}$sin(2α+$\frac{π}{6}$)-$\frac{2\sqrt{3}}{3}$(0<α<$\frac{π}{3}$).

點(diǎn)評(píng) 本題考查在實(shí)際問題中建立三角函數(shù)模型,求解問題的關(guān)鍵是根據(jù)圖形建立起三角模型,將三角模型用所學(xué)的恒等式變換公式進(jìn)行化簡(jiǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)數(shù)列{an}滿足a1=$\frac{1}{3}$,an+1=an+$\frac{{{a}_{n}}^{2}}{{n}^{2}}$,a≠0,n∈N
(Ⅰ)求a2,a3
(Ⅱ)證明:數(shù)列{an}為遞增數(shù)列;
(Ⅲ)證明:$\frac{n}{2n+1}$≤an≤$\frac{2n-1}{2n+1}$,n∈N

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知$\overrightarrow{a}$=(2$\sqrt{3}$sinx,sinx+cosx),$\overrightarrow$=(cosx,sinx-cosx),函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$.
(Ⅰ)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(Ⅱ)在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,cosA=$\frac{2b-a}{2c}$,若f(A)-m>0恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖所示,在正方體ABCD-A1B1C1D1中,已知E為棱CC1上的動(dòng)點(diǎn).
(1)求證:A1E⊥BD;
(2)是否存在這樣的E點(diǎn),使得平面A1BD⊥平面EBD?若存在,請(qǐng)找出這樣的E點(diǎn);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知點(diǎn)A(x1,y1),B(x2,y2)是函數(shù)y=sinx(-π<x<0)上的兩個(gè)不同點(diǎn),且x1<x2,則對(duì)于下列四個(gè)不等式:
①$\frac{{sin{x_1}}}{x_1}<\frac{{sin{x_2}}}{x_2}$;
②sinx1<sinx2
③$\frac{1}{2}({sin{x_1}+sin{x_2}})>sin\frac{{{x_1}+{x_2}}}{2}$;
④$sin\frac{x_1}{2}>sin\frac{x_2}{2}$.
其中正確不等式的個(gè)數(shù)是( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.f(x)=sinx+cosx,則${∫}_{-\frac{π}{2}}^{\frac{π}{2}}$f(x)dx=$\frac{3+\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.關(guān)于x的方程( k-2 )x2-( 3k+6 )x+6k=0有兩個(gè)負(fù)根,則k的取值范圍是$[{-\frac{2}{5},0})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知函數(shù)f(x)=3sin$\frac{x}{2}$-4cos$\frac{x}{2}$的圖象關(guān)于直線x=θ對(duì)稱,則sinθ=-$\frac{24}{25}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知函數(shù)f(x)=ex(x-aex)有兩個(gè)極值點(diǎn),則實(shí)數(shù)a的取值范圍是(0,$\frac{1}{2}$).

查看答案和解析>>

同步練習(xí)冊(cè)答案