5.下列各點中,位于不等式(x+2y+1)(x-y+4)<0表示的平面區(qū)域內的是( 。
A.(0,0)B.(-2,0)C.(-1,0)D.(2,3)

分析 分別將點的坐標代入不等式,滿足不等式即可.

解答 解:A.當x=0,y=0時,1×4<0不成立,
B.當x=-2,y=0時,(-2+1)(-2+4)=-2<0成立
C.當x=-1,y=0時,(-1+1)(-1+4)=0<0不成立
D.當x=2,y=3時,(2+6+1)(2-3+4)=9×3=27<0不成立,
故選:B

點評 本題主要考查點與平面區(qū)域之間的關系,將點的坐標代入不等式進行驗證是解決本題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

15.已知函數(shù)f(x)=$\sqrt{3}$sinxcosx-cos2x-$\frac{1}{2}$.
( I)求函數(shù)f(x)的單調遞增區(qū)間;
(II)將函數(shù)f(x)的圖象各點縱坐標不變,橫坐標伸長為原來的2倍,然后向左平移$\frac{π}{3}$個單位,得函數(shù)F(x)的圖象.若a,b,c分別是△ABC三個內角A,B,C的對邊,a+c=4,且F(B)=0,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.設函數(shù)f(x)=a(x+1)2ln(x+1)+bx(x>-1),曲線y=f(x)過點(e-1,e2-e+1),且在點(0,0)處的切線方程為y=0.
(1)求a,b的值;
(2)證明:當x≥0時,f(x)≥x2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.在(0,π)上任取一個數(shù),使得$\sqrt{3}$<tanx的概率是$\frac{1}{6}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.已知銳角△ABC中,∠A,∠B,∠C的對邊分別為a,b,c,且a,b,c成等差數(shù)列,則cosB的取值范圍為[$\frac{1}{2}$,$\frac{3}{5}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知雙曲線和離心率為sin$\frac{π}{4}$的橢圓有相同的焦點F1,F(xiàn)2,P是兩曲線的一個公共點,若cos∠F1PF2=$\frac{1}{2}$,則雙曲線的離心率等于(  )
A.2B.$\frac{{\sqrt{5}}}{2}$C.$\frac{{\sqrt{6}}}{2}$D.$\frac{{\sqrt{7}}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.已知點P在拋物線y2=4x上,且點P到y(tǒng)軸的距離與其焦點的距離之比為$\frac{1}{2}$,則點P到x軸的距離為2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.如圖所示,一報刊亭根據某報紙以往的銷售記錄,繪制了日銷售量的頻率分布直方圖,但原始數(shù)據遺失,則對日銷售量中位數(shù)的估計值較為合理的是( 。
A.100B.113C.117D.125

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.如圖,PA為四邊形ABCD外接圓的切線,CB的延長線交PA于點P,AC與BD相交于點M,PA∥BD
(1)求證:∠ACB=∠ACD;
(2)若PA=3,PC=6,AM=1,求AB的長.

查看答案和解析>>

同步練習冊答案