已知平面
和兩條直線a、b,則下列命題中正確的是
A 若a∥
, a∥b,則b∥
B 若a⊥
, b⊥
,則a∥b
C 若a⊥
, b⊥a,則b∥
D 若a∥
, b∥
,則b∥a
練習冊系列答案
相關(guān)習題
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)
在如圖所示的幾何體中,四邊形
是正方形,
,
,
分別為
、
的中點,且
.
(Ⅰ) 求證:平面
;
(Ⅱ)求三棱錐
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)在直四棱住
中(側(cè) 棱與底面垂直的四棱柱),
,底面是邊長為
的正方形,
、
、
分別是棱
、
、
的中點
(1)求證:平面
平面
;
(2)求證:
面
。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)
如圖,在四棱錐
中,
⊥平面
,
⊥平面
,
,
.
(1) 證明:
;
(2) 點
為線段
上一點,求直線
與平面
所成角的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
(.(9分)如圖所示三棱錐
P—ABC中,異面直線
PA與
BC所成的角為
,二面角
P—
BC—
A為
,△
PBC和△
ABC的面積分別為16和10,
BC=4. 求:
(1)
PA的長;(2)三棱錐
P—ABC的體積
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
在四棱錐P-ABCD中,底面ABCD是邊長為1的正方形,PA
底面ABCD,點M是棱PC的中點,AM
PBD.
(1)求PA的長
(2)證明PB
平面AMD
(3)求棱PC與平面AMD所成角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本大題14分)如圖,在棱長為
a的正方體
ABCD-
A1B1C1D1中,
E、
F、
G分別是
CB、
CD、
CC1的中點.
(1)求證:
B1D1∥面
EFG(2)求證:平面
AA1C⊥面
EFG.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
設(shè)
、
、
是三個不同的平面,
a、
b是兩條不同的直線,給出下列4個命題:
①若
a∥
,
b∥
,則
a∥
b; ②若
a∥
,
b∥
,
a∥
b,則
∥
;③若
a⊥
,
b⊥
,
a⊥
b,則
⊥
;④若
a、
b在平面
內(nèi)的射影互相垂直,則
a⊥
b. 其中正確命題是( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
把正方形ABCD沿對角線AC折起,當A、B C、D四點為頂點的三棱錐體積最大時,直線BD與平面ABC所成的角的大小為
查看答案和解析>>