已知
(1) 求函數(shù)上的最小值;
(2) 若對一切恒成立,求實(shí)數(shù)的取值范圍;
(3) 證明:對一切,都有成立.

(1);(2).

解析試題分析:(1)對函數(shù)求導(dǎo),通過導(dǎo)數(shù)研究函數(shù)的單調(diào)性,再討論的范圍,以便得到上的單調(diào)性.從而得到函數(shù)的最小值;(2)由題意得到,即.再通過導(dǎo)數(shù)研究上的單調(diào)性,從而得,要想對一切恒成立,則;(3)問題等價(jià)于證明,由(1)可以得的最小值是,當(dāng)且僅當(dāng)時(shí)取到.再構(gòu)造函數(shù),通過導(dǎo)數(shù)研究單調(diào)性,由單調(diào)性研究函數(shù)的最大值. 對一切,都有成立,即證明要小于函數(shù)的最小值.在本問中,盡管二者相等,但因?yàn)椴煌瑫r(shí)取到,故仍可滿足題中的不等式.
試題解析:(1),
當(dāng)單調(diào)遞減,當(dāng)單調(diào)遞增
,即時(shí), 
,即時(shí),上單調(diào)遞增,;所以 
(2),則
設(shè),則
當(dāng)單調(diào)遞減,當(dāng)單調(diào)遞增,
所以
所以.所以實(shí)數(shù)的取值范圍為.
(3)問題等價(jià)于證明,
由(1)可知的最小值是,當(dāng)且僅當(dāng)時(shí)取到,
設(shè),則,易知
,當(dāng)且僅當(dāng)時(shí)取到,
從而對一切,都有成立.
考點(diǎn):1.用導(dǎo)數(shù)研究函數(shù)的單調(diào)性;2.通過單調(diào)性求最值;3.不等式恒成立問題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)若1是函數(shù)的一個(gè)零點(diǎn),求函數(shù)的解析表達(dá)式;
(2)試討論函數(shù)的零點(diǎn)的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知定義在上的函數(shù),其中為常數(shù).
(1)當(dāng)是函數(shù)的一個(gè)極值點(diǎn),求的值;
(2)若函數(shù)在區(qū)間上是增函數(shù),求實(shí)數(shù)的取值范圍;
(3)當(dāng)時(shí),若,在處取得最大值,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知f(x)=xlnx.
(I)求f(x)在[t,t+2](t>0)上的最小值;
(Ⅱ)證明:都有。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)的導(dǎo)數(shù)為,若函數(shù)的圖象關(guān)于直線對稱,且函數(shù)處取得極值.
(I)求實(shí)數(shù)的值;
(II)求函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(I)討論函數(shù)的單調(diào)性;
(Ⅱ)當(dāng)時(shí),恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(I)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若,試解答下列兩小題.
(i)若不等式對任意的恒成立,求實(shí)數(shù)的取值范圍;
(ii)若是兩個(gè)不相等的正數(shù),且以,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(Ⅰ)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(Ⅱ)求的單調(diào)區(qū)間;
(Ⅲ)若在區(qū)間上恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(I)求f(x)的單調(diào)區(qū)間及極值;
(II)若關(guān)于x的不等式恒成立,求實(shí)數(shù)a的集合.

查看答案和解析>>

同步練習(xí)冊答案