分析 (1)利用由函數(shù)的圖象的頂點坐標(biāo)求出A,由周期求出ω,由五點法作圖求出φ的值,可得函數(shù)的解析式.
(2)利用同角三角的基本關(guān)系,求得 cos(α+$\frac{π}{4}$)的值,再利用兩角差的正弦公式求得sinα=sin[(α+$\frac{π}{4}$)-$\frac{π}{4}$]的值.
解答 解:(1)根據(jù)函數(shù)f(x)=Asin(ωx+φ) (A>0,ω>0,|φ|<$\frac{π}{2}$,x∈R)的圖象,
可得A=2,T=$\frac{2π}{ω}$=7+1,∴ω=$\frac{π}{4}$.
再根據(jù)五點法作圖可得,$\frac{π}{4}$•(-1)+φ=0,求得φ=$\frac{π}{4}$,
故f(x)=2sin($\frac{π}{4}$x+$\frac{π}{4}$).
(2)若f($\frac{4α}{π}$)=2sin(α+$\frac{π}{4}$)=1,∴sin(α+$\frac{π}{4}$)=$\frac{1}{2}$,
且α∈($\frac{π}{4}$,$\frac{3π}{4}$),∴α+$\frac{π}{4}$∈($\frac{π}{2}$,π),∴cos(α+$\frac{π}{4}$)=-$\frac{\sqrt{3}}{2}$,
∴sinα=sin[(α+$\frac{π}{4}$)-$\frac{π}{4}$]=sin(α+$\frac{π}{4}$)cos$\frac{π}{4}$-cos(α+$\frac{π}{4}$)sin$\frac{π}{4}$=$\frac{1}{2}•\frac{\sqrt{2}}{2}$+$\frac{\sqrt{3}}{2}$•$\frac{\sqrt{2}}{2}$=$\frac{\sqrt{2}+\sqrt{6}}{4}$.
點評 本題主要考查由函數(shù)y=Asin(ωx+φ)的部分圖象求解析式,由函數(shù)的圖象的頂點坐標(biāo)求出A,由周期求出ω,由五點法作圖求出φ的值,同角三角的基本關(guān)系,兩角差的正弦公式的應(yīng)用,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 重心 | B. | 垂心 | C. | 外心 | D. | 內(nèi)心 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com