下列函數(shù)是偶函數(shù)的是( 。
A、f(x)=x2+1
B、f(x)=x3-2x
C、f(x)=
x2+1
x
D、f(x)=x 
1
2
考點(diǎn):函數(shù)奇偶性的判斷
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)函數(shù)奇偶性的定義即可得到結(jié)論.
解答: 解:A.f(-x)=x2+1=f(x),函數(shù)f(x)是偶函數(shù),
B.f(-x)=-x3+2x=-(x3-2x)=-f(x)為奇函數(shù),
C.f(-x)=-
x2+1
x
=-f(x)為奇函數(shù),
D.f(x)=x 
1
2
的定義域?yàn)閇0,+∞)為非奇非偶函數(shù),
故選:A
點(diǎn)評:本題主要考查函數(shù)奇偶性的判斷,根據(jù)函數(shù)奇偶性的定義是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知p:f(x+1)是偶函數(shù),q:函數(shù)f(x)關(guān)于直線x=1對稱,則p是q的( 。
A、充分非必要條件
B、必要非充分條件
C、充要條件
D、既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲:8,6,7,8,6,5,9,10,4,7;乙:6,7,7,8,6,7,8,7,9,5.則這兩組數(shù)據(jù)的方差是(  )
A、s2=3.1,s2=1.2
B、s2=3.0,s2=1.4
C、s2=3.0,s2=1.2
D、s2=3.1,s2=1.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)y=f(x) 是偶函數(shù),且在[0,+∞)上單調(diào)遞增,則( 。
A、f(-2)>f(1)
B、f(-2)<f(-1)
C、f(-2)>f(2)
D、f(|x|)<f(x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列各圖象中,哪一個不可能是函數(shù)y=f(x)的圖象(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某城市出租車的收費(fèi)標(biāo)準(zhǔn)是:3千米以內(nèi)(含3千米),收起步價8元;3千米以上至10千米以內(nèi)(含10千米),超出3千米的部分按1.4元/千米收;10千米以上,超出10千米的部分按1.8元/千米收。
(Ⅰ)計(jì)算某乘客搭乘出租車行駛8千米時應(yīng)付的車費(fèi);
(Ⅱ)試寫出車費(fèi)與里程之間的函數(shù)解析式;
(Ⅲ)武剛周末外出,行程為12千米,他設(shè)計(jì)了兩種方案:
方案1 分兩段乘車,先乘一輛車行6千米,下車換乘另一輛車再行6千米到目的地;
方案2 只乘一輛車到目的地.
試問:以上哪種方案武剛更省錢,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為培養(yǎng)高中生綜合實(shí)踐能力和團(tuán)隊(duì)合作意識,某市教育部門主辦了全市高中生綜合實(shí)踐知識與技能競賽.該競賽分為預(yù)賽和決賽兩個階段,參加決賽的團(tuán)隊(duì)按照抽簽方式?jīng)Q定出場順序.通過預(yù)賽,共選拔出甲、乙等六個優(yōu)秀團(tuán)隊(duì)參加決賽.
(Ⅰ)求決賽出場的順序中,甲不在第一位、乙不在第六位的概率;
(Ⅱ)若決賽中甲隊(duì)和乙隊(duì)之間間隔的團(tuán)隊(duì)數(shù)記為X,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=(cos4x-sin4x)+2
(1)求函數(shù)f(x)的最小正周期、最大值和最小值;
(2)求函數(shù)f(x)的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(實(shí)驗(yàn)班做)某市規(guī)定中學(xué)生百米成績達(dá)標(biāo)標(biāo)準(zhǔn)為不超過16秒.現(xiàn)從該市中學(xué)生中按照男、女生比例隨機(jī)抽取了50人,其中有30人達(dá)標(biāo).將此樣本的頻率估計(jì)為總體的概率.
(1)隨機(jī)調(diào)查45名學(xué)生,設(shè)ξ為達(dá)標(biāo)人數(shù),求ξ的數(shù)學(xué)期望與方差.
(2)如果男、女生采用相同的達(dá)標(biāo)標(biāo)準(zhǔn),男、女生達(dá)標(biāo)情況如下表:
總計(jì)
達(dá)標(biāo)a=24 b=
 
 
不達(dá)標(biāo)c=
 
d=12
 
總計(jì)
 
 
n=50
根據(jù)表中所給的數(shù)據(jù),完成2×2列聯(lián)表(注:請將答案填到答題卡上),并判斷在犯錯誤的概率不超過0.01的前提下能否認(rèn)為“體育達(dá)標(biāo)與性別有關(guān)”?若有,你能否給出一個更合理的達(dá)標(biāo)方案?
附:k2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,
P(K2≥k00.0250.010.0050.001
k05.0246.6357.87910.828

查看答案和解析>>

同步練習(xí)冊答案