A. | $\frac{{\sqrt{6}}}{2}$ | B. | $\frac{{\sqrt{5}}}{2}$ | C. | $\sqrt{3}$ | D. | 2 |
分析 由題意得右焦點(diǎn)F2(c,0),設(shè)一漸近線OA的方程為y=$\frac{a}$x,則另一漸近線OB的方程為y=-$\frac{a}$x,由垂直的條件可得F2A的方程,代入漸近線方程,可得A,B的橫坐標(biāo),由向量共線的坐標(biāo)表示,結(jié)合離心率公式,解方程可得.
解答 解:由題意得右焦點(diǎn)F2(c,0),
設(shè)一漸近線OA的方程為y=$\frac{a}$x,
則另一漸近線OB的方程為y=-$\frac{a}$x,
由F2A的方程為y=-$\frac{a}$(x-c),
聯(lián)立方程y=$\frac{a}$x,
可得A的橫坐標(biāo)為$\frac{{a}^{2}}{c}$,
由F2A的方程為y=-$\frac{a}$(x-c),
聯(lián)立方程y=-$\frac{a}$x,
可得B的橫坐標(biāo)為$\frac{{a}^{2}c}{{a}^{2}-^{2}}$.
由$\overrightarrow{A{F_2}}=\frac{1}{3}\overrightarrow{{F_2}B}$,
可得3(c-$\frac{{a}^{2}}{c}$)=$\frac{{a}^{2}c}{{a}^{2}-^{2}}$-c,
即為-$\frac{3{a}^{2}}{c}$+4c=$\frac{{a}^{2}c}{{a}^{2}-^{2}}$,
由e=$\frac{c}{a}$,可得-$\frac{3}{{e}^{2}}$+4=$\frac{1}{2-{e}^{2}}$,
即有2e4-5e2+3=0,解得e2=$\frac{3}{2}$或1(舍去),
即為e=$\frac{\sqrt{6}}{2}$.
故選:A.
點(diǎn)評(píng) 本題主要考查雙曲線的標(biāo)準(zhǔn)方程,以及雙曲線的簡單性質(zhì)的應(yīng)用,同時(shí)考查向量的共線的坐標(biāo)表示,求得點(diǎn)A、B的橫坐標(biāo)是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{5}$ | B. | $\frac{3}{10}$ | C. | $\frac{3}{8}$ | D. | $\frac{3}{7}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$ | C. | 2 | D. | -2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | $\frac{1}{2}$ | D. | $\frac{\sqrt{3}}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com