6.sin 20°cos 10°+sin 10°sin 70°的值是( 。
A.$\frac{1}{4}$B.$\frac{\sqrt{3}}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{4}$

分析 利用兩角差的余弦公式求解即可得答案.

解答 解:sin 20°cos 10°+sin 10°sin 70°=cos70°cos10°+sin70°sin10°
=cos(70°-10°)
=cos60°=$\frac{1}{2}$.
故選:C.

點(diǎn)評 本題考查三角函數(shù)化簡求值,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知集合A={x|0<ax+1≤5(a>0)},B={x|-$\frac{1}{2}$<x≤2}.
(1)若A=B,求實(shí)數(shù)a的值;
(2)若A⊆B,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{1\;\;\;\;\;\;\;\;\;\;\;\;\;(x≤\sqrt{3})}\\{\sqrt{4-{x}^{2}}(\sqrt{3}<x<2)}\\{0\;\;\;\;\;\;\;\;\;\;\;\;\;\;(x≥2)}\end{array}\right.$,則${∫}_{-1}^{2010}$f(x)dx的值為( 。
A.$\frac{π}{3}$+$\frac{2+\sqrt{3}}{2}$B.$\frac{π}{2}$+$\frac{2+\sqrt{3}}{2}$C.$\frac{π}{6}$+$\frac{2+\sqrt{3}}{2}$D.$\frac{π}{2}$+$\frac{1+\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知集合M={-1,-2,3},N={-2,3,5},則( 。
A.M⊆NB.N⊆MC.M∩N={-2,3}D.M∪N={-1,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知F1,F(xiàn)2是雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的左右焦點(diǎn),過F2作雙曲線一條漸近線的垂線,垂足為點(diǎn)A,交另一條漸近線于點(diǎn)B,且$\overrightarrow{A{F_2}}=\frac{1}{3}\overrightarrow{{F_2}B}$,則該雙曲線的離心率為( 。
A.$\frac{{\sqrt{6}}}{2}$B.$\frac{{\sqrt{5}}}{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=lnx-$\frac{{{{(x-1)}^2}}}{2}$,g(x)=x-1.
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)若存在x0>1,當(dāng)x∈(1,x0)時,恒有f(x)>mg(x),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知{an}為等差數(shù)列,且a1+a3=8,a2+a4=12.
(1)求{an}的通項(xiàng)公式;
(2)設(shè)${b_n}=\frac{1}{{{a_n}{a_{n+1}}}}$,求數(shù)列{bn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=ex和函數(shù)g(x)=kx+m(k、m為實(shí)數(shù),e為自然對數(shù)的底數(shù),e≈2.71828).
(1)求函數(shù)h(x)=f(x)-g(x)的單調(diào)區(qū)間;
(2)當(dāng)k=2,m=1時,判斷方程f(x)=g(x)的實(shí)數(shù)根的個數(shù)并證明;
(3)已知m≠1,不等式(m-1)[f(x)-g(x)]≤0對任意實(shí)數(shù)x恒成立,求km的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知正方形ABCD的邊長為1,$\overrightarrow{AB}$=a,$\overrightarrow{BC}$=b,則a+b的模等于( 。
A.1B.2C.$\sqrt{2}$D.$\sqrt{3}$

查看答案和解析>>

同步練習(xí)冊答案