【題目】記,其中為函數(shù)的導(dǎo)數(shù)若對于,,則稱函數(shù)為D上的凸函數(shù).
求證:函數(shù)是定義域上的凸函數(shù);
已知函數(shù),為上的凸函數(shù).
求實數(shù)a的取值范圍;
求函數(shù),的最小值.
【答案】(1)見解析;(2);見解析
【解析】
求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出導(dǎo)函數(shù)的單調(diào)區(qū)間,從而判斷函數(shù)的凹凸性即可;
求出函數(shù)的導(dǎo)數(shù),問題轉(zhuǎn)化為在上恒成立,求出a的范圍即可;令,,則,通過討論a的范圍,求出的最小值即可.
由,,
得,,
令,,則,
當(dāng)時,,當(dāng)時,,
故在遞減,在遞增,
故,
故對于,,
函數(shù)是定義域上的凸函數(shù);
由,,
得,,
函數(shù)是上的凸函數(shù),
故在上恒成立,
故在上恒成立,
故,故,
故實數(shù)a的范圍是,
令,,
則,
,,,
當(dāng)時,在上恒成立,
故F,
故H,當(dāng)且僅當(dāng)時取等號,
;
當(dāng)時,在恒成立,
故F在遞增,
故F,
故H;
當(dāng)時,令,
存在零點,,
其中,,
,,
故,
結(jié)合的性質(zhì)有:時,,故F,
時,,故F,
故F在上遞減,在遞增,
故F,
由知,,
故,從而,
故F,
又的圖象是一條不間斷的曲線,
故F在上有零點,
故H的最小值是0,
綜上,當(dāng)時,的最小值是,
當(dāng)時,的最小值是0,
當(dāng)時,的最小值是.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)高考實行新方案,規(guī)定:語文、數(shù)學(xué)和英語是考生的必考科目,考生還須從物理、化學(xué)、生物、歷史、地理和政治六個科目中選取三個科目作為選考科目,若一名學(xué)生從六個科目中選出了三個科目作為選考科目,則稱該學(xué)生的選考方案確定;否則,稱該學(xué)生選考方案待確定.例如,學(xué)生甲選擇“物理、化學(xué)和生物”三個選考科目,則學(xué)生甲的選考方案確定,“物理、化學(xué)和生物”為其選考方案.
某學(xué)校為了了解高一年級420名學(xué)生選考科目的意向,隨機(jī)選取30名學(xué)生進(jìn)行了一次調(diào)查,統(tǒng)計選考科目人數(shù)如下表:
性別 | 選考方案確定情況 | 物理 | 化學(xué) | 生物 | 歷史 | 地理 | 政治 |
男生 | 選考方案確定的有8人 | 8 | 8 | 4 | 2 | 1 | 1 |
選考方案待確定的有6人 | 4 | 3 | 0 | 1 | 0 | 0 | |
女生 | 選考方案確定的有10人 | 8 | 9 | 6 | 3 | 3 | 1 |
選考方案待確定的有6人 | 5 | 4 | 1 | 0 | 0 | 1 |
(Ⅰ)估計該學(xué)校高一年級選考方案確定的學(xué)生中選考生物的學(xué)生有多少人?
(Ⅱ)假設(shè)男生、女生選擇選考科目是相互獨立的.從選考方案確定的8位男生隨機(jī)選出1人,從選考方案確定的10位女生中隨機(jī)選出1人,試求該男生和該女生的選考方案中都含有歷史科目的概率;
(Ⅲ)從選考方案確定的8名男生隨機(jī)選出2名,設(shè)隨機(jī)變量兩名男生選考方案相同時,兩名男生選考方案不同時,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列為等差數(shù)列,,,數(shù)列的前項和為,若對一切,恒有,則能取到的最大整數(shù)是( )
A. 6 B. 7 C. 8 D. 9
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】四棱錐中,已知平面PAD,,,E為棱PC上的一點,經(jīng)過A,B,E三點的平面與棱PD相交于點F.
求證:平面PAD;
求證:;
若平面平面PCD,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于項數(shù)為()的有窮正整數(shù)數(shù)列,記(),即為中的最大值,稱數(shù)列為數(shù)列的“創(chuàng)新數(shù)列”.比如的“創(chuàng)新數(shù)列”為.
(1)若數(shù)列的“創(chuàng)新數(shù)列”為1,2,3,4,4,寫出所有可能的數(shù)列;
(2)設(shè)數(shù)列為數(shù)列的“創(chuàng)新數(shù)列”,滿足(),求證: ();
(3)設(shè)數(shù)列為數(shù)列的“創(chuàng)新數(shù)列”,數(shù)列中的項互不相等且所有項的和等于所有項的積,求出所有的數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,四邊形ABCD是直角梯形,,平面ABCD,,.
求SC與平面ASD所成的角余弦值;
求平面SAB和平面SCD所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】每年的金秋十月,越野e族阿拉善英雄會在內(nèi)蒙古自治區(qū)阿拉善盟阿左旗騰格里沙漠舉行,該項目已打造成集沙漠競技運動、汽車文化極致體驗、主題休閑度假為一體的超級汽車文化賽事娛樂綜合體.為了減少對環(huán)境的污染,某環(huán)保部門租用了特制環(huán)保車清潔現(xiàn)場垃圾.通過查閱近5年英雄會參會人數(shù)(萬人)與沙漠中所需環(huán)保車輛數(shù)量(輛),得到如下統(tǒng)計表:
參會人數(shù)(萬人) | 11 | 9 | 8 | 10 | 12 |
所需環(huán)保車輛(輛) | 28 | 23 | 20 | 25 | 29 |
(1)根據(jù)統(tǒng)計表所給5組數(shù)據(jù),求出關(guān)于的線性回歸方程.
(2)已知租用的環(huán)保車平均每輛的費用(元)與數(shù)量(輛)的關(guān)系為
.主辦方根據(jù)實際參會人數(shù)為所需要投入使用的環(huán)保車,
每輛支付費用6000元,超出實際需要的車輛,主辦方不支付任何費用.預(yù)計本次英雄會大約有14萬人參加,根據(jù)(Ⅰ)中求出的線性回歸方程,預(yù)測環(huán)保部門在確保清潔任務(wù)完成的前提下,應(yīng)租用多少輛環(huán)保車?獲得的利潤是多少?(注:利潤主辦方支付費用租用車輛的費用).
參考公式:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點在拋物線: 上,直線: 與拋物線交于, 兩點,且直線, 的斜率之和為-1.
(1)求和的值;
(2)若,設(shè)直線與軸交于點,延長與拋物線交于點,拋物線在點處的切線為,記直線, 與軸圍成的三角形面積為,求的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com