分析 根據(jù):數(shù)列的通項公式為$\frac{1}{{n}^{2}+n}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$,利用裂項法進行求解即可.
解答 解:數(shù)列的通項公式為$\frac{1}{{n}^{2}+n}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$,
則$\frac{1}{{1}^{2}+1}$+$\frac{1}{{2}^{2}+2}$+$\frac{1}{{3}^{2}+3}$+…+$\frac{1}{201{6}^{2}+2016}$=1-$\frac{1}{2}$$+\frac{1}{2}-\frac{1}{3}$+…+$\frac{1}{2016}$-$\frac{1}{2017}$=1-$\frac{1}{2017}$=$\frac{2016}{2017}$,
故答案為:$\frac{2016}{2017}$.
點評 本題主要考查數(shù)列和的計算,根據(jù)條件得到數(shù)列的通項公式以及,利用裂項法是解決本題的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,$\frac{1}{2}$) | B. | (-∞,0)∪(0,$\frac{1}{2}$) | C. | (0,$\frac{1}{2}$) | D. | [0,$\frac{1}{2}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 線性回歸模型y=bx+a+e是一次函數(shù) | |
B. | 在線性回歸模型y=bx+a+e中,因變量y是由自變量x唯一確定的 | |
C. | 在殘差圖中,殘差點比較均勻地落在水平帶狀區(qū)域中,說明選用的模型比較合適 | |
D. | 用R2=1-$\frac{\underset{\stackrel{n}{∑}}{i=1}({y}_{i}-{\widehat{y}}_{i})^{2}}{\underset{\stackrel{n}{∑}}{i=1}({y}_{i}-\overline{y})^{2}}$來刻畫回歸方程,R2越小,擬合的效果越好 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a≥0 | B. | a≤0 | C. | a<0 | D. | a≤-1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{2}{3}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com