分析 (Ⅰ)推導出ED∥BC,從而ED∥平面BCH,進而ED∥HI,由此能證明IH∥BC.
(Ⅱ) 以D為原點為,DE為x軸,DC為y軸,DA為z軸,建立空間直角坐標系,利用向量法能求出二面角A-GI-C的余弦值.
解答 證明:(Ⅰ)因為D、E分別是邊AC和AB的中點,所以ED∥BC,
因為BC?平面BCH,ED?平面BCH,
所以ED∥平面BCH,
因為ED?平面BCH,ED?平面AED,平面BCH∩平面AED=HI,
所以ED∥HI,
又因為ED∥BC,所以IH∥BC.
解:(Ⅱ) 如圖,以D為原點為,DE為x軸,DC為y軸,DA為z軸,建立空間直角坐標系,
由題意得D(0,0,0),E(2,0,0),A(0,0,2),F(xiàn)(3,1,0),C(0,2,0),H(0,0,1),
$\overrightarrow{EA}=(-2,0,2)$,$\overrightarrow{EF}=(1,1,0)$,$\overrightarrow{CH}=(0,-2,1)$,$\overrightarrow{HI}=\frac{1}{2}\overrightarrow{DE}=(1,0,0)$,
設平面AGI的一個法向量為$\overrightarrow{n_1}=({x_1},{y_1},{z_1})$,
則$\left\{\begin{array}{l}\overrightarrow{EA}•\overrightarrow{n_1}=0\\ \overrightarrow{EB}•\overrightarrow{n_1}=0\end{array}\right.$,故$\left\{\begin{array}{l}-\overrightarrow{x_1}+\overrightarrow{z_1}=0\\ \overrightarrow{x_1}+\overrightarrow{y_1}=0\end{array}\right.$,令$\overrightarrow{z_1}=1$,解得$\overrightarrow{x_1}=1$,$\overrightarrow{y_1}=-1$,則$\overrightarrow{n_1}=(1,-1,1)$設,
平面CHI的一個法向量為$\overrightarrow{n_2}=({x_2},{y_2},{z_2})$,
則$\left\{\begin{array}{l}\overrightarrow{CH}•\overrightarrow{n_2}=0\\ \overrightarrow{HI}•\overrightarrow{n_2}=0\end{array}\right.$,故$\left\{\begin{array}{l}-2\overrightarrow{y_1}+\overrightarrow{z_2}=0\\ \overrightarrow{x_2}=0\end{array}\right.$,令$\overrightarrow{z_2}=-2$,解得$\overrightarrow{y_1}=-1$,則$\overrightarrow{n_2}=(0,-1,-2)$,
$cos<\overrightarrow{n_1},\overrightarrow{n_2}>=\frac{{|{1-2}|}}{{\sqrt{3}•\sqrt{5}}}=\frac{{\sqrt{15}}}{15}$,
所以二面角A-GI-C的余弦值為$\frac{{\sqrt{15}}}{15}$.
點評 本題考查直線與直線平行的證明,考查二面角的余弦值的求法,是中檔題,解題時要認真審題,注意向量法的合理運用.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com