A. | {t|${\frac{{2\sqrt{5}}}{5}$≤t≤$\frac{{2\sqrt{3}}}{3}}\right.}$} | B. | {t|{2≤t≤2$\sqrt{3}}$} | C. | {t|${\frac{{2\sqrt{5}}}{5}$≤t≤2$\sqrt{3}$} | D. | {{t|{2≤t≤2$\sqrt{2}}$} |
分析 設(shè)平面AD1E與直線BC交于點G,連接AG、EG,則G為BC的中點.分別取B1B、B1C1的中點M、N,連接AM、MN、AN,可證出平面A1MN∥平面D1AE,從而得到A1F是平面A1MN內(nèi)的直線.由此將點F在線段MN上運動并加以觀察,即可得到A1F與平面BCC1B1所成角取最大值、最小值的位置,由此不難得到A1F與平面BCC1B1所成角的正切取值范圍.
解答 解:設(shè)平面AD1E與直線BC交于點G,連接AG、EG,則G為BC的中點
分別取B1B、B1C1的中點M、N,連接AM、MN、AN,則
∵A1M∥D1E,A1M?平面D1AE,D1E?平面D1AE,
∴A1M∥平面D1AE.同理可得MN∥平面D1AE,
∵A1M、MN是平面A1MN內(nèi)的相交直線
∴平面A1MN∥平面D1AE,
由此結(jié)合A1F∥平面D1AE,可得直線A1F?平面A1MN,即點F是線段MN上上的動點.
設(shè)直線A1F與平面BCC1B1所成角為θ
運動點F并加以觀察,可得
當(dāng)F與M(或N)重合時,A1F與平面BCC1B1所成角等于∠A1MB1,此時所成角θ達(dá)到最小值,滿足tanθ=$\frac{{A}_{1}{B}_{1}}{{B}_{1}M}$=2;
當(dāng)F與MN中點重合時,A1F與平面BCC1B1所成角達(dá)到最大值,滿足tanθ=$\frac{{A}_{1}{B}_{1}}{\frac{\sqrt{2}}{2}{B}_{1}M}$=2$\sqrt{2}$
∴A1F與平面BCC1B1所成角的正切取值范圍為[2,2$\sqrt{2}$].
故選:D.
點評 本題給出正方體中側(cè)面BCC1B1內(nèi)動點F滿足A1F∥平面D1AE,求A1F與平面BCC1B1所成角的正切取值范圍,著重考查了正方體的性質(zhì)、直線與平面所成角、空間面面平行與線面平行的位置關(guān)系判定等知識,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{2}$ | B. | $\frac{5}{2}$ | C. | $\frac{2}{3}$ | D. | $\frac{4}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ac>bc | B. | ac2≥bc2 | C. | $\frac{1}{a}$<$\frac{1}$ | D. | $\frac{a}$>1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com