9.在△ABC中,A=$\frac{π}{3}$,BC=6,AB=2$\sqrt{6}$,則C=(  )
A.$\frac{π}{4}$或$\frac{3π}{4}$B.$\frac{π}{6}$或$\frac{5π}{6}$C.$\frac{π}{4}$D.$\frac{3π}{4}$

分析 直接利用正弦定理求解C的大小即可.

解答 解:在△ABC中,A=$\frac{π}{3}$,BC=6,AB=2$\sqrt{6}$,
由正弦定理$\frac{BC}{sinA}=\frac{AB}{sinC}$,可得:sinC=$\frac{2\sqrt{6}×\frac{\sqrt{3}}{2}}{6}$=$\frac{\sqrt{2}}{2}$,
因?yàn)锽C>AB,所以A>C,
C=$\frac{π}{4}$.
故選:C.

點(diǎn)評(píng) 本題考查正弦定理的應(yīng)用,注意三角形的邊角關(guān)系,是基礎(chǔ)題,易錯(cuò)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.在2016年高考來(lái)臨之際,食堂的伙食進(jìn)行了全面升級(jí).某日5名同學(xué)去食堂就餐,有米飯,花卷,包子和面條四種主食.每種主食均至少有一名同學(xué)選擇且每人只能選擇其中一種.花卷數(shù)量不足僅夠一人食用,甲同學(xué)因腸胃不好不能吃米飯,則不同的食物搭配方案種數(shù)為132.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知命題P:函數(shù)f(x)=|x+a|在區(qū)間(-∞,-1)上是單調(diào)函數(shù),命題q:函數(shù)g(x)=loga(x+a)(a>0,且a≠1),在(-2,+∞)上是增函數(shù),則?p成立是q成立的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.在△ABC中,設(shè)D=BC邊的中點(diǎn),則向量$\overrightarrow{AD}$等于( 。
A.$\overrightarrow{AB}$+$\overrightarrow{AC}$B.$\overrightarrow{AB}$-$\overrightarrow{AC}$C.$\frac{1}{2}$($\overrightarrow{AB}$+$\overrightarrow{AC}$)D.$\frac{1}{2}$($\overrightarrow{AB}$-$\overrightarrow{AC}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.?dāng)?shù)列求和:
(1)求數(shù)列1$\frac{1}{2}$,2$\frac{1}{4}$,3$\frac{1}{8}$,…(n+$\frac{1}{{2}^{n}}$),…的前n項(xiàng)和Sn
(2)求和:1+$\frac{1}{1+2}$+$\frac{1}{1+2+3}$+…+$\frac{1}{1+2+…+n}$;
(3)設(shè)f(x)=$\frac{{x}^{2}}{1+{x}^{2}}$,求f($\frac{1}{2014}$)+f($\frac{1}{2013}$)+…+f(1)+f(2)+…+f(2014);
(4)求和:Sn=$\frac{1}{a}$+$\frac{2}{{a}^{2}}$+$\frac{3}{{a}^{3}}$+…+$\frac{n}{{a}^{n}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.如圖所示,四邊形ABCD與BDEF均為菱形,∠DAB=∠DBF=60°,且FA=FC.
(1)求異面直線FC與DE所成角的余弦值;
(2)求證:平面BDEF⊥平面ABCD;
(3)直線AF與平面ABCD所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知函數(shù)f(x)=sinωx+$\sqrt{3}$cosωx(ω>0),f($\frac{π}{6}$)+f($\frac{π}{2}$)=0,且f(x)在區(qū)間($\frac{π}{6}$,$\frac{π}{2}$)上遞減,則ω=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.判斷下列對(duì)應(yīng)關(guān)系是否為函數(shù).
(1)A=R,B=R,對(duì)任意的x∈A,x→$\sqrt{x}$;
(2)A=R,B={0,1},對(duì)應(yīng)關(guān)系f:當(dāng)x為有理數(shù)時(shí),f(x)=1;當(dāng)x為無(wú)理數(shù)時(shí),f(x)=0;
(3)A=B=N*,對(duì)任意的x∈A,x→|x-5|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知關(guān)于x的一元二次方程x2-ax+b=0的兩個(gè)實(shí)根為m,n,關(guān)于x的一元二次方程x2-bx+c=0的兩個(gè)實(shí)根為p,q,其中m,n,p,q互不相等,集合A={m,n,p,q},作集合S={x|x=α+β,α∈A,β∈A且α≠β},P={x|x=αβ,α∈A,β∈A且α≠β},若已知S={1,2,5,6,9,10},P={-7,-3,-2,6,14,21},求a,b,c的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案