分析 利用雙曲線的定義、平面幾何知識得到是${a_1}+{c_1}=\sqrt{3}{b_1}$,可得a1=2c1. $|OP|=\frac{a_1}{2}={a_2}$,設(shè)雙曲線左焦點(diǎn)為Q,則$|OQ|=\frac{1}{2}\;•\;\frac{a_1^2}{c_1}={a_1}={c_2}$,可得${e_2}=\frac{c_2}{a_2}=2$.
解答 解:由題,|OA|+|OF|=2|OM|,由正六邊形得$|OM|=\frac{{\sqrt{3}}}{2}{b_1}$.于是${a_1}+{c_1}=\sqrt{3}{b_1}$,可得a1=2c1.
當(dāng)所成二面角為60°時(shí),設(shè)雙曲線左頂點(diǎn)為P,
則$|OP|=\frac{a_1}{2}={a_2}$,
設(shè)雙曲線左焦點(diǎn)為Q,
則$|OQ|=\frac{1}{2}\;•\;\frac{a_1^2}{c_1}={a_1}={c_2}$,
所以${e_2}=\frac{c_2}{a_2}=2$.
故答案為:2
點(diǎn)評 本題考查了雙曲線的離心率,解題時(shí)多用平面幾何知識及定義,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4+6i | B. | 4+2i | C. | -4-2i | D. | -2+2i. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | $\frac{8}{3}$ | C. | $\frac{6}{5}$ | D. | $\frac{12}{25}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{6}{13}$ | B. | $\frac{36}{5}$ | C. | $\frac{36}{13}$ | D. | $\frac{6}{5}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com