已知雙曲線
=1的左支上一點M到右焦點F
2的距離為18,N是線段MF
2的中點,O是坐標原點,則|ON|等于( )
A.4 | B.2 | C.1 | D. |
設雙曲線左焦點為F
1,由雙曲線的定義知,
|MF
2|-|MF
1|=2a,即18-|MF
1|=10,
所以|MF
1|=8.
又ON為△MF
1F
2的中位線,
所以|ON|=
|MF
1|=4,所以選A.
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
已知拋物線的方程為
,直線
的方程為
,點
關于直線
的對稱點在拋物線上.
(1)求拋物線的方程;
(2)已知
,點
是拋物線的焦點,
是拋物線上的動點,求
的最小值及此時點
的坐標;
(3)設點
、
是拋物線上的動點,點
是拋物線與
軸正半軸交點,
是以
為直角頂點的直角三角形.試探究直線
是否經(jīng)過定點?若經(jīng)過,求出定點的坐標;若不經(jīng)過,請說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知頂點為原點
的拋物線
的焦點
與橢圓
的右焦點重合,
與
在第一和第四象限的交點分別為
.
(1)若
是邊長為
的正三角形,求拋物線
的方程;
(2)若
,求橢圓
的離心率
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
設拋物線
的焦點為
,點
,線段
的中點在拋物線上.設動直線
與拋物線相切于點
,且與拋物線的準線相交于點
,以
為直徑的圓記為圓
.
(1)求
的值;
(2)試判斷圓
與
軸的位置關系;
(3)在坐標平面上是否存在定點
,使得圓
恒過點
?若存在,求出
的坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
設橢圓
的左右焦點為
,作
作
軸的垂線與
交于
兩點,
與
軸交于點
,若
,則橢圓
的離心率等于________.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
方程mx
2+y
2=1所表示的所有可能的曲線是( )
A.橢圓、雙曲線、圓 |
B.橢圓、雙曲線、拋物線 |
C.兩條直線、橢圓、圓、雙曲線 |
D.兩條直線、橢圓、圓、雙曲線、拋物線 |
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
在平面直角坐標系xOy中,已知橢圓C的中心在原點O,焦點在x軸上,短軸長為2,離心率為
.
(1)求橢圓C的方程;
(2)設A,B是橢圓C上的兩點,△AOB的面積為
.若A、B兩點關于x軸對稱,E為線段AB的中點,射線OE交橢圓C于點P.如果
=t
,求實數(shù)t的值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知直線l
1:4x-3y+6=0和直線l
2:x=-1,拋物線y
2=4x上一動點P到直線l
1和直線l
2的距離之和的最小值是( )
A.2 | B.3 | C. | D. |
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
橢圓C:
的左、右頂點分別為A
1、A
2,點P在C上且直線PA
2斜率的取值范圍是[﹣2,﹣1],那么直線PA
1斜率的取值范圍是( 。
查看答案和解析>>