【題目】在平面直角坐標(biāo)系中,曲線C的方程為,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為.

1)求直線l的直角坐標(biāo)方程和曲線C的參數(shù)方程;

2)已知P、Q兩點(diǎn)分別是曲線C和直線l上的動(dòng)點(diǎn),且直線的傾斜角為,求的最小值.

【答案】1l,Cα為參數(shù));(2.

【解析】

(1),結(jié)合兩角和的余弦公式可求出,進(jìn)而可求出直線的直角坐標(biāo)方程;結(jié)合橢圓的參數(shù)方程公式可求出曲線C的參數(shù)方程.

(2) 設(shè)點(diǎn)P到直線l的距離為d,則,由,結(jié)合三角函數(shù)的最值求解,可求出的最小值.

解:(1)由,

,由于,則直線l的直角坐標(biāo)方程為,

曲線C的參數(shù)方程為α為參數(shù))

2)由于直線l的傾斜角為,直線的傾斜角為,

則直線l與直線的夾角為,設(shè)點(diǎn)P到直線l的距離為d,則.

由于,

當(dāng)且僅當(dāng),時(shí)等號(hào)成立,因此的最小值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】 已知函數(shù)f(x)=|xa|+|x-2|.

(1)當(dāng)a=-3時(shí),求不等式f(x)≥3的解集;

(2)f(x)≤|x-4|的解集包含[1,2],求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)圖像上有動(dòng)點(diǎn),函數(shù)圖像上有動(dòng)點(diǎn).兩點(diǎn)同時(shí)從縱坐標(biāo)的初始位置出發(fā),沿著各自函數(shù)圖像向右上方運(yùn)動(dòng)至兩點(diǎn)的縱坐標(biāo)值再次相等,且始終滿足,則在此運(yùn)動(dòng)過程中兩點(diǎn)的距離的取值范圍是______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】年底,湖北省武漢市等多個(gè)地區(qū)陸續(xù)出現(xiàn)感染新型冠狀病毒肺炎的患者,為及時(shí)有效地對(duì)疫情數(shù)據(jù)進(jìn)行流行病學(xué)統(tǒng)計(jì)分析,某地研究機(jī)構(gòu)針對(duì)該地實(shí)際情況,根據(jù)該地患者是否有武漢旅行史與是否有確診病例接觸史,將新冠肺炎患者分為四類:有武漢旅行史(無接觸史),無武漢旅行史(無接觸史),有武漢旅行史(有接觸史)和無武漢旅行史(有接觸史),統(tǒng)計(jì)得到以下相關(guān)數(shù)據(jù):

有接觸史

無接觸史

總計(jì)

有武漢旅行史

無武漢旅行史

總計(jì)

1)請(qǐng)將上面列聯(lián)表填寫完整,并判斷能否在犯錯(cuò)誤的概率不超過的前提下,認(rèn)為有武漢旅行史與有確診病例接觸史有關(guān)系?

2)已知在無武漢旅行史的名患者中,有名無癥狀感染者.現(xiàn)在從無武漢旅行史的名患者中,選出名進(jìn)行病例研究,求人中至少有名是無癥狀感染者的概率.

下面的臨界值表供參考:

參考公式:,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了響應(yīng)綠色出行,某市推出了新能源分時(shí)租賃汽車,并對(duì)該市市民使用新能源租賃汽車的態(tài)度進(jìn)行調(diào)查,得到有關(guān)數(shù)據(jù)如下表1

1

愿意使用新能源租賃汽車

不愿意使用新能源租賃汽車

總計(jì)

男性

100

300

女性

400

總計(jì)

400

其中一款新能源分時(shí)租賃汽車的每次租車費(fèi)用由行駛里程和用車時(shí)間兩部分構(gòu)成:行駛里程按1/公里計(jì)費(fèi);用車時(shí)間不超過30分鐘時(shí),按0.15/分鐘計(jì)費(fèi);超過30分鐘時(shí),超出部分按0.20/分鐘計(jì)費(fèi).已知張先生從家到上班地點(diǎn)15公里,每天上班租用該款汽車一次,每次的用車時(shí)間均在20~60分鐘之間,由于堵車紅綠燈等因素,每次的用車時(shí)間(分鐘)是一個(gè)隨機(jī)變量.張先生記錄了100次的上班用車時(shí)間,并統(tǒng)計(jì)出在不同時(shí)間段內(nèi)的頻數(shù)如下表2

2

時(shí)間(分鐘)

20,30]

3040]

40,50]

50,60]

頻數(shù)

20

40

30

10

1)請(qǐng)補(bǔ)填表1中的空缺數(shù)據(jù),并判斷是否有99.5%的把握認(rèn)為該市市民對(duì)新能源租賃汽車的使用態(tài)度與性別有關(guān);

2)根據(jù)表2中的數(shù)據(jù),將各時(shí)間段發(fā)生的頻率視為概率,以各時(shí)間段的區(qū)間中點(diǎn)值代表該時(shí)間段的取值,試估計(jì)張先生租用一次該款汽車上班的平均用車時(shí)間;

3)若張先生使用滴滴打車上班,則需要車費(fèi)27元,試問:張先生上班使用滴滴打車和租用該款汽車,哪一種更合算?

附:

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩名射手在一次射擊中得分為兩個(gè)相互獨(dú)立的隨機(jī)變量ξη,已知甲、乙兩名射手在每次射擊中射中的環(huán)數(shù)大于6環(huán),且甲射中10,9,8,7環(huán)的概率分別為0.5,3a,a,0.1,乙射中10,9,8環(huán)的概率分別為0.3,0.3,0.2.

(1)ξη的分布列;

(2)ξ,η的數(shù)學(xué)期望與方差,并以此比較甲、乙的射擊技術(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】國(guó)慶70周年閱兵式上的女兵們是一道靚麗的風(fēng)景線,每一名女兵都是經(jīng)過層層篩選才最終入選受閱方隊(duì),篩選標(biāo)準(zhǔn)非常嚴(yán)格,例如要求女兵身高(單位:cm)在區(qū)間內(nèi).現(xiàn)從全體受閱女兵中隨機(jī)抽取200人,對(duì)她們的身高進(jìn)行統(tǒng)計(jì),將所得數(shù)據(jù)分為,,五組,得到如圖所示的頻率分布直方圖,其中第三組的頻數(shù)為75,最后三組的頻率之和為0.7.

1)請(qǐng)根據(jù)頻率分布直方圖估計(jì)樣本的平均數(shù)和方差(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代表);

2)根據(jù)樣本數(shù)據(jù),可認(rèn)為受閱女兵的身高Xcm)近似服從正態(tài)分布,其中近似為樣本平均數(shù),近似為樣本方差.

i)求;

ii)若從全體受閱女兵中隨機(jī)抽取10人,求這10人中至少有1人的身高在174.28cm以上的概率.

參考數(shù)據(jù):若,則,,,,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰中,斜邊,為直角邊上的一點(diǎn),將沿直線折疊至的位置,使得點(diǎn)在平面外,且點(diǎn)在平面上的射影在線段上設(shè),則的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了研究家用轎車在高速公路上的車速情況,交通部門對(duì)100名家用轎車駕駛員進(jìn)行調(diào)查,得到其在高速公路上行駛時(shí)的平均車速情況為:在55名男性駕駛員中,平均車速超過100的有40人;在45名女性駕駛員中,平均車速不超過100的有25.

1)完成下面的列聯(lián)表,并判斷是否有99.5%的把握認(rèn)為平均車速超過100的人與性別有關(guān).

平均車速超過100人數(shù)

平均車速不超過100人數(shù)

合計(jì)

男性駕駛員人數(shù)

女性駕駛員人數(shù)

合計(jì)

2)以上述數(shù)據(jù)樣本來估計(jì)總體,現(xiàn)從高速公路上行駛的大量家用轎車中隨機(jī)抽取3輛,記這3輛車中駕駛員為男性且車速超過100的車輛數(shù)為,若每次抽取的結(jié)果是相互獨(dú)立的,求的分布列和數(shù)學(xué)期望.

參考公式與數(shù)據(jù):,其中

0.150

0.100

0.050

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

同步練習(xí)冊(cè)答案