14.近年來我國(guó)電子商務(wù)行業(yè)迎來發(fā)展的新機(jī)遇.2016年雙十一期間,某購物平臺(tái)的銷售業(yè)績(jī)高達(dá)516億人民幣.與此同時(shí),相關(guān)管理部門推出了針對(duì)電商的商品和服務(wù)的評(píng)價(jià)體系.現(xiàn)從評(píng)價(jià)系統(tǒng)中選出200次成功交易,并對(duì)其評(píng)價(jià)進(jìn)行統(tǒng)計(jì),對(duì)商品的好評(píng)率為0.6,對(duì)服務(wù)的好評(píng)率為0.75,其中對(duì)商品和服務(wù)都做出好評(píng)的交易為80次.
(Ⅰ)先完成關(guān)于商品和服務(wù)評(píng)價(jià)的2×2列聯(lián)表,再判斷能否在犯錯(cuò)誤的概率不超過0.001的前提下,認(rèn)為商品好評(píng)與服務(wù)好評(píng)有關(guān)?
(Ⅱ)若用分層抽樣的方法從“對(duì)商品好評(píng)“和“對(duì)商品不滿意“中抽出5次交易,再從這5次交易中選出2次.求恰有一次為”商品好評(píng)”的概率.
附臨界值表:
P(K2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
 k 2.072 2.706 3.841 5.024 6.635 7.897 10.828
K2的觀測(cè)值:$k=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$(其中n=a+b+c+d)
關(guān)于商品和服務(wù)評(píng)價(jià)的2×2列聯(lián)表:
對(duì)服務(wù)好評(píng)對(duì)服務(wù)不滿意合計(jì)
對(duì)商品好評(píng)a=80b=40120
對(duì)商品不滿意c=70d=1080
合計(jì)15050n=200

分析 (Ⅰ)由已知列出關(guān)于商品和服務(wù)評(píng)價(jià)的2×2列聯(lián)表,代入公式求得k2的值,對(duì)應(yīng)數(shù)表得答案;
(Ⅱ)確定基本事件的個(gè)數(shù),即可求恰有一次為”商品好評(píng)”的概率.

解答 解:(Ι)由題意可得關(guān)于商品和服務(wù)評(píng)價(jià)的2×2列聯(lián)表如下:

對(duì)服務(wù)好評(píng)對(duì)服務(wù)不滿意合計(jì)
對(duì)商品好評(píng)8040120
對(duì)商品不滿意701080
合計(jì)15050200
…(2分)$k=\frac{{200×{{(80×10-70×40)}^2}}}{150×50×80×120}≈11.111>10.828$…(5分)
故能在犯錯(cuò)誤的概率不超過0.001的前提下,認(rèn)為商品好評(píng)與服務(wù)好評(píng)有關(guān).…(6分)
(Ⅱ)由題意,對(duì)商品好評(píng)的交易抽出3次,記為A1,A2,A3.對(duì)商品不滿意的交易抽出2次,記為B1,B2,…(7分)
所以,五次交易抽出兩次的基本事件有:A1A2,A1A3,A1B1,A1B2,A2A3,A2B1,A2B2,A3B1,A3B2,B1B2,共10件.…(10分)
恰有一次為商品好評(píng)的概率為$\frac{3}{5}$…(12分)

點(diǎn)評(píng) 本小題主要考查統(tǒng)計(jì)與概率的相關(guān)知識(shí),對(duì)考生的對(duì)數(shù)據(jù)處理的能力有很高要求,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.不等式組$\left\{\begin{array}{l}x(x+2)>0\\|x|<1\end{array}\right.$的解集為(0,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.求證:若a2+2ab+b2+a+b-2≠0,則a+b≠1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.函數(shù)y=log${\;}_{\frac{1}{3}}$(-x2+2x)  的單調(diào)減區(qū)間為( 。
A.(-∞,1)B.(1,+∞)C.(0,1)D.(1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.若點(diǎn)O和點(diǎn)$F(-\sqrt{3},0)$分別是雙曲線$\frac{x^2}{a^2}-{y^2}={1_{\;}}$(a>0)的對(duì)稱中心和左焦點(diǎn),點(diǎn)P為雙曲線右支上任意一點(diǎn),則$\frac{{{{|{PF}|}^2}}}{{{{|{OP}|}^2}+1}}$的取值范圍為(1,(1,$\frac{5+2\sqrt{6}}{3}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若x>0,y>0,x+4y+2xy=7,則x+2y的最小值是3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.一個(gè)幾何體的三視圖如圖所示,則該幾何體的表面積為(12+4$\sqrt{2}$)π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知四邊形ABCD中,AB∥CD,AD=AB=BC=$\frac{1}{2}$CD=2,E為DC中點(diǎn),連接AE,將△DAE沿AE翻折到△D1AE.
(1)證明:BD1⊥AE;
(2)若CD1=$\sqrt{10}$,求二面角D1-AB-C的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別是a,b,c,且c=2,2sinA=$\sqrt{3}$acosC.
(1)求角C的大;
(2)若2sin2A+sin(2B+C)=sinC,求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案