分析 (1)取AE中點H,推導出D1H⊥AE,BH⊥AE,從而AE⊥面HBD1,由此能求出BD1⊥AE.
(2)以AE中點H為原點,HA為x軸,HB為y軸,過H作平面ABCD的垂線為z軸,建立空間直角坐標系,由此能求出二面角D1-AB-C的平面角的余弦值.
解答 證明:(1)取AE中點H,
∵AD1=AE=D1E,AB=AE=BE,
∴D1H⊥AE,BH⊥AE,
∵D1H∩BH=H,∴AE⊥面HBD1,
∵BD1?平面HBD1,∴BD1⊥AE.
解:(2)以AE中點H為原點,HA為x軸,HB為y軸,
過H作平面ABCD的垂線為z軸,建立空間直角坐標系,
設(shè)二面有D1-AE-D的平面角的大小為θ,
A(1,0,0),B(0,$\sqrt{3}$,0),D1(0,-$\sqrt{3}cosθ$,$\sqrt{3}sinθ$),C(-2,$\sqrt{3}$,0),
CD1=$\sqrt{4+(-\sqrt{3}cosθ-\sqrt{3})^{2}+(\sqrt{3}sinθ)^{2}}$=$\sqrt{10}$,解得$θ=\frac{π}{2}$,
∴D1(0,0,$\sqrt{3}$),$\overrightarrow{AB}$=(-1,$\sqrt{3}$,0),$\overrightarrow{B{D}_{1}}$=(0,-$\sqrt{3},\sqrt{3}$),
設(shè)平面ABD1的一個法向量$\overrightarrow{n}$=(x,y,z),
則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{AB}=-x+\sqrt{3}y=0}\\{\overrightarrow{n}•\overrightarrow{B{D}_{1}}=-\sqrt{3}y+\sqrt{3}z=0}\end{array}\right.$,取z=1,得$\overrightarrow{n}$=($\sqrt{3},1,1$),
平面ABC的法向量$\overrightarrow{m}$=(0,0,1),
設(shè)二面角D1-AB-C的平面角為θ,
則cosθ=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{1}{\sqrt{5}}=\frac{\sqrt{5}}{5}$.
∴二面角D1-AB-C的平面角的余弦值為$\frac{\sqrt{5}}{5}$.
點評 本題考查線線垂直的證明,考查二面角的余弦值的求法,是中檔題,解題時要認真審題,注意向量法的合理運用.
科目:高中數(shù)學 來源: 題型:解答題
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.897 | 10.828 |
對服務(wù)好評 | 對服務(wù)不滿意 | 合計 | |
對商品好評 | a=80 | b=40 | 120 |
對商品不滿意 | c=70 | d=10 | 80 |
合計 | 150 | 50 | n=200 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 4 | B. | 3 | C. | 2 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [-1,0] | B. | [2,8] | C. | [1,2] | D. | [0,2] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com