若關(guān)于x的方程x2+x+a=0的一個(gè)根大于1,另一根小于1,求實(shí)數(shù)a的取值范圍.
考點(diǎn):函數(shù)的零點(diǎn)與方程根的關(guān)系
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:令f(x)=x2+x+a,因?yàn)榉匠蘹2+x+a=0的一個(gè)根大于1,另一根小于1,即1位于方程x2+x+a=0的兩根之間,所以f(1)<0,這樣即可求得a的取值范圍.
解答: 解:令f(x)=x2+x+a,
則由已知條件得:f(1)=2+a<0,
∴a<-2.
點(diǎn)評(píng):考查函數(shù)圖象和x軸交點(diǎn)與對(duì)應(yīng)方程實(shí)數(shù)根的關(guān)系以及二次函數(shù)圖象.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=A(sin
x
2
cosφ+cos
x
2
sinφ)(A>0,0<φ<π)的最大值是2,且f(0)=2.
(1)求φ的值;
(2)已知銳角△ABC的三個(gè)內(nèi)角分別為A,B,C,若f(2A)=
6
5
,f(2B+π)=-
10
13
,求f(2C)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=(ax2+bx+c)e-x(a<0)的圖象過(guò)點(diǎn)(0,-2),且在該點(diǎn)的切線方程為4x-y-2=0.
(1)若f(x)在(2,+∞)上為單調(diào)增函數(shù),求實(shí)數(shù)a的取值范圍.
(2)討論函數(shù)f(x)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

正四面體ABCD棱長(zhǎng)為a,求正四面體的各個(gè)面中心為頂點(diǎn)的多面體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,數(shù)列{cn}滿足:cn=nan,且數(shù)列{cn}的前n項(xiàng)和為(n-1)Sn+2n(n∈N*).
(Ⅰ)求證:數(shù)列{Sn+2}是等比數(shù)列;
(Ⅱ)若點(diǎn)Pn的坐標(biāo)為(1,bn)(n∈N*),函數(shù)g(x)=ln(1+x2)在x=tn
1
2
<t<2,且t≠1)處的切線始終與OPn平行(O為原點(diǎn)).求證:當(dāng)
1
2
<t<2,且t≠1時(shí),不等式
1
b1
+
1
b2
+…+
1
bn
<an-an -
1
2
對(duì)任意n∈N*都成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

解關(guān)于x的不等式:mx2+(m-2)x-2>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=sin(
π
6
-x)cos(
π
3
-x)-sinxcosx+
1
4

(Ⅰ)求函數(shù)f(x)的最小正周期和單調(diào)減區(qū)間;
(Ⅱ) 若
2
f(
x
2
)=-
15
4
,且x∈(-
2
,-
5
4
π),求sin(x+
π
12
)值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某體育雜志針對(duì)2014年巴西世界杯發(fā)起了一項(xiàng)調(diào)查活動(dòng),調(diào)查“各球隊(duì)在世界杯的名次與該隊(duì)歷史上的實(shí)力和表現(xiàn)有沒(méi)有關(guān)系”,在所有參與調(diào)查的人中,持“有關(guān)系”“無(wú)關(guān)系”“不知道”態(tài)度的人數(shù)如表所示:
 有關(guān)系無(wú)關(guān)系不知道
40歲以下800450200
40歲以上(含40歲)100150300
(1)在所有參與調(diào)查的人中,用分層抽樣的方法抽取n個(gè)人,已知從持“有關(guān)系”態(tài)度的人中抽取45人,求n的值,并求從持其他兩種態(tài)度的人中應(yīng)抽取的人數(shù);
(2)在持“不知道”態(tài)度的人中,用分層抽樣的方法抽取5人看成一個(gè)總體,從這5人中任選取2人,求至少一人在40歲以下的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

有900名學(xué)生參加“環(huán)保知識(shí)競(jìng)賽”,為考察競(jìng)賽成績(jī)情況,從中抽取部分學(xué)生的成績(jī)(得分均整數(shù),滿分為100分)進(jìn)行統(tǒng)計(jì),請(qǐng)你根據(jù)尚未完成并有局部污損的頻率分面表和頻率分布直方圖(如圖)解釋下列問(wèn)題.
(1)填滿頻率分布表;
(2)補(bǔ)全頻率分布直方圖;
(3)若成績(jī)?cè)?5.5-85.5的學(xué)生可以獲得二等獎(jiǎng),求獲得二等獎(jiǎng)的學(xué)生人數(shù).
分組頻數(shù)頻率
50.5--60.540.08
60.5--70.50.16
70.5--80.510
80.5--90.5160.32
90.5-100.5
合計(jì)50

查看答案和解析>>

同步練習(xí)冊(cè)答案