(本小題滿分14分)設(shè)橢圓(a>b>0)的左焦點為F1(-2,0),左準線 L1 與x軸交于點N(-3,0),過點N且傾斜角為300的直線L交橢圓于A、B兩點。
(1)求直線L和橢圓的方程;
(2)求證:點F1(-2,0)在以線段AB為直徑的圓上
解:(1)由題意知,c=2及 得 a=6    ----------2分
   ∴橢圓方程為        ---------4分
直線L的方程為:y-0=tan300(x+3)即y=(x+3)------------6分
(2)由方程組   -----------------8分
設(shè)A(x1,y1),B(x2,y2),則 x1+x2=-3  x1x2
   
∴點F(-2,0)在以線段AB為直徑的圓上      ----14分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
設(shè)橢圓的焦點分別為、,拋物線:的準線與軸的交點為,且
(I)求的值及橢圓的方程;
(II)過、分別作互相垂直的兩直線與橢圓分別交于、、四點(如圖),
求四邊形面積的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知、分別是橢圓C:的左焦點和右焦點,O是坐標系原點, 且橢圓C的焦距為6, 過的弦兩端點所成⊿的周長是.
(Ⅰ).求橢圓C的標準方程.
(Ⅱ)已知點是橢圓C上不同的兩點,線段的中點為.
求直線的方程;
(Ⅲ)若線段的垂直平分線與橢圓C交于點、,試問四點、、是否在同一個圓上,若是,求出該圓的方程;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

雙曲線與橢圓有共同的焦點,點
是雙曲線的漸近線與橢圓的一個交點,求橢圓與雙曲線的標準方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

、是橢圓的焦點,在C上滿足的點P的個數(shù)
為         .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

((本小題滿分14分)
已知橢圓的離心率為,且橢圓上一點與橢圓的兩個焦點構(gòu)成的三角形周長為
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)直線與橢圓交于兩點,且以為直徑的圓過橢圓的右頂點,
面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓的離心率等于(    ).
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知方程表示橢圓,則的取值范圍為         .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如果橢圓上一點到焦點的距離等于6,則點到另一個焦點的距離為____

查看答案和解析>>

同步練習(xí)冊答案